README.md

rforecastca

Overview

Allows users to retrieve weather forecasts from Environment Canada’s Datamart service in tabular format.

Currently supports retrieving the following forecasts:

FYI: This package is still in development and breaking changes may occur in the near future.

CityPage Weather Forecasts

Get List of Available Locations

You can get a list of all the locations with forecasts available by using the rfca_cityweather_locations() function

all_locations <- rfca_cityweather_locations()
head(all_locations)
##     site_name  site_id province
## 1   Athabasca s0000001       AB
## 2  Clearwater s0000002       BC
## 3   Valemount s0000003       BC
## 4 Grand Forks s0000004       BC
## 5     McBride s0000005       BC
## 6     Merritt s0000006       BC
ontario_locations <- rfca_cityweather_locations(prov = "ON")
head(ontario_locations)
##      site_name  site_id province
## 1     Marathon s0000022       ON
## 2  Terrace Bay s0000023       ON
## 3 Attawapiskat s0000024       ON
## 4       Gogama s0000025       ON
## 5   Hawkesbury s0000069       ON
## 6   Alexandria s0000070       ON

A data frame containing short codes for all provinces can be accessed using data(prov_state_codes)

data(prov_state_codes)

# Filter for only Canadian short codes
prov_short_codes <- prov_state_codes %>%
  filter(country == "CA")

head(prov_short_codes)
## # A tibble: 6 x 3
##   country prov_state_shortcode prov_state_name 
##   <chr>   <chr>                <chr>           
## 1 CA      AB                   Alberta         
## 2 CA      BC                   British Columbia
## 3 CA      MB                   Manitoba        
## 4 CA      NB                   New Brunswick   
## 5 CA      NL                   Newfoundland    
## 6 CA      NS                   Nova Scotia

Get Forecast for Location

You can then pass the site_id for the site you’re interested in to rfca_cityweather_forecast() to retrieve the forecast

my_forecast <- rfca_cityweather_forecast(site_id = "s0000318")
my_forecast
##    site_name  site_id           Timestamp Temperature Temperature_Units
## 1    Halifax s0000318 2018-11-19 16:00:00           2                 C
## 2    Halifax s0000318 2018-11-19 17:00:00           3                 C
## 3    Halifax s0000318 2018-11-19 18:00:00           3                 C
## 4    Halifax s0000318 2018-11-19 19:00:00           3                 C
## 5    Halifax s0000318 2018-11-19 20:00:00           3                 C
## 6    Halifax s0000318 2018-11-19 21:00:00           3                 C
## 7    Halifax s0000318 2018-11-19 22:00:00           4                 C
## 8    Halifax s0000318 2018-11-19 23:00:00           5                 C
## 9    Halifax s0000318 2018-11-20 00:00:00           6                 C
## 10   Halifax s0000318 2018-11-20 01:00:00           6                 C
## 11   Halifax s0000318 2018-11-20 02:00:00           7                 C
## 12   Halifax s0000318 2018-11-20 03:00:00           7                 C
## 13   Halifax s0000318 2018-11-20 04:00:00           7                 C
## 14   Halifax s0000318 2018-11-20 05:00:00           7                 C
## 15   Halifax s0000318 2018-11-20 06:00:00           7                 C
## 16   Halifax s0000318 2018-11-20 07:00:00           6                 C
## 17   Halifax s0000318 2018-11-20 08:00:00           6                 C
## 18   Halifax s0000318 2018-11-20 09:00:00           5                 C
## 19   Halifax s0000318 2018-11-20 10:00:00           3                 C
## 20   Halifax s0000318 2018-11-20 11:00:00           4                 C
## 21   Halifax s0000318 2018-11-20 12:00:00           5                 C
## 22   Halifax s0000318 2018-11-20 13:00:00           5                 C
## 23   Halifax s0000318 2018-11-20 14:00:00           5                 C
## 24   Halifax s0000318 2018-11-20 15:00:00           5                 C
##    Wind_Direction Wind_Speed Wind_Speed_Units             Condition
## 1              VR          5             km/h Periods of light snow
## 2              VR          5             km/h Periods of light snow
## 3              VR          5             km/h               Showers
## 4               S         20             km/h               Showers
## 5               S         20             km/h               Showers
## 6               S         20             km/h               Showers
## 7               S         20             km/h       Periods of rain
## 8               S         20             km/h       Periods of rain
## 9               S         20             km/h       Periods of rain
## 10              S         20             km/h       Periods of rain
## 11              S         20             km/h       Periods of rain
## 12              S         20             km/h       Periods of rain
## 13              S         20             km/h       Periods of rain
## 14              S         20             km/h       Periods of rain
## 15              N         10             km/h       Periods of rain
## 16              N         10             km/h              Overcast
## 17              N         10             km/h              Overcast
## 18              N         10             km/h              Overcast
## 19             VR          5             km/h     Chance of showers
## 20             VR          5             km/h     Chance of showers
## 21             VR          5             km/h     Chance of showers
## 22             VR          5             km/h     Chance of showers
## 23             VR          5             km/h     Chance of showers
## 24             VR          5             km/h     Chance of showers

North American Ensemble Forecast System (NAEFS) Forecasts

Get Available Locations

You can get a list of available forecast locations using rfca_naefs_locations(). By default this returns all available locations

naefs_locations <- rfca_naefs_locations()
head(naefs_locations)
##         City WMO_code Latitude Longitude Altitude Country Province_state
## 1   Argentia             47.30    -54.00       16      CA             NL
## 2     Badger             48.97    -56.07      105      CA             NL
## 3  Bonavista             48.67    -53.12       27      CA             NL
## 4     Burgeo             47.62    -57.62       12      CA             NL
## 5  Cape Race             46.65    -53.07       28      CA             NL
## 6 Cartwright      YRF    53.70    -57.03       14      CA             NL
##          File_path
## 1   ARGENTIA_NL_CA
## 2     BADGER_NL_CA
## 3  BONAVISTA_NL_CA
## 4     BURGEO_NL_CA
## 5  CAPE_RACE_NL_CA
## 6 CARTWRIGHT_NL_CA

You can also subset locations by country using a two letter short code

# Canadian locatiosn
can_naefs_locations <- rfca_naefs_locations(country = "CA")
head(can_naefs_locations)
##         City WMO_code Latitude Longitude Altitude Country Province_state
## 1   Argentia             47.30    -54.00       16      CA             NL
## 2     Badger             48.97    -56.07      105      CA             NL
## 3  Bonavista             48.67    -53.12       27      CA             NL
## 4     Burgeo             47.62    -57.62       12      CA             NL
## 5  Cape Race             46.65    -53.07       28      CA             NL
## 6 Cartwright      YRF    53.70    -57.03       14      CA             NL
##          File_path
## 1   ARGENTIA_NL_CA
## 2     BADGER_NL_CA
## 3  BONAVISTA_NL_CA
## 4     BURGEO_NL_CA
## 5  CAPE_RACE_NL_CA
## 6 CARTWRIGHT_NL_CA

Or by province/state

ontario_naefs_locations <- rfca_naefs_locations(province_state = "ON")
head(ontario_naefs_locations)
##             City WMO_code Latitude Longitude Altitude Country
## 1      Armstrong      YYW    50.30    -89.03      351      CA
## 2       Atikokan      YIB    48.75    -91.62      393      CA
## 3         Barrie             44.38    -79.78      295      CA
## 4 Big Trout Lake      YTL    53.83    -89.87      224      CA
## 5          Britt             45.80    -80.53      190      CA
## 6 Caribou Island      YCI    47.33    -85.83      187      CA
##   Province_state            File_path
## 1             ON      ARMSTRONG_ON_CA
## 2             ON       ATIKOKAN_ON_CA
## 3             ON         BARRIE_ON_CA
## 4             ON BIG_TROUT_LAKE_ON_CA
## 5             ON          BRITT_ON_CA
## 6             ON CARIBOU_ISLAND_ON_CA

The full list of country short codes is available using data(country_codes)

data(country_codes)
head(country_codes)
## # A tibble: 6 x 2
##   country             country_shortcode
##   <chr>               <chr>            
## 1 Canada              CA               
## 2 United States       US               
## 3 Mexico              MX               
## 4 Antigua and Barbuda AG               
## 5 Bahamas             BS               
## 6 Barbados            BB

and the full list of province/state short codes using data(prov_state_codes)

data(prov_state_codes)
head(prov_state_codes)
## # A tibble: 6 x 3
##   country prov_state_shortcode prov_state_name
##   <chr>   <chr>                <chr>          
## 1 CA      AB                   Alberta        
## 2 MX      AG                   Aguascalientes 
## 3 US      AK                   Alaska         
## 4 US      AL                   Alabama        
## 5 US      AR                   Arkansas       
## 6 US      AZ                   Arizona

Get Available Parameters

The NAEFS forecast includes a variety of parameters. You can get a data frame containing the short code for each parameter, as well as text description and the units using rfca_naefs_parameters()

all_params <- rfca_naefs_parameters()
head(all_params)
##           parameter
## 1          APCP-SFC
## 2              MSLP
## 3              TCDC
## 4        HGT-500HPA
## 5 LAYER-1000-500HPA
## 6          WIND-SFC
##                                                   parameter_desc
## 1                              Surface Accumulated Precipitation
## 2                                        Mean Sea level Pressure
## 3                                              Total Cloud Cover
## 4                                        Geopotential at 500 hPa
## 5 Thicknesses (Geopotentiel Difference) between 1000 and 500 hPa
## 6                                             Surface Wind Speed
##                                              parameter_desc_fr  units
## 1                       Précipitations accumulées à la surface     mm
## 2                         Pression moyenne au niveau de la mer    hPa
## 3                                        Couvert nuageux total tenths
## 4                                       Géopotentiel à 500 hPa    dam
## 5 Épaisseurs (différence de géopotentiel entre 1000 et 500 hPa    dam
## 6                                 Vitesse du vent à la surface   km/h

Get NAEFS Forecast for Location

You can retrieve NAEFS forecasts for a specific location using rfca_naefs_forecast() which takes four arguments:

# Retrieve NAEFS forecast for Argentia, NL for current date
# (all parameters)
arg_forecast <- rfca_naefs_forecast(
  forecast_time = "00",
  forecast_location = "Argentia"
)

head(arg_forecast)
##             Timestamp Values forecast_parameter Units Model_Id
## 1 2018-11-19 06:00:00      0           APCP-SFC    mm        1
## 2 2018-11-19 06:00:00      0           APCP-SFC    mm        2
## 3 2018-11-19 06:00:00      0           APCP-SFC    mm        3
## 4 2018-11-19 06:00:00      0           APCP-SFC    mm        4
## 5 2018-11-19 06:00:00      0           APCP-SFC    mm        5
## 6 2018-11-19 06:00:00      0           APCP-SFC    mm        6


rywhale/rforecastca documentation built on May 4, 2019, 7:38 a.m.