plot.ssvs_mi | R Documentation |
This function creates a plot of SSVS-MI estimates with minimum and maximum and a plot for marginal inclusion probabilities (MIP) optional thresholds for highlighting significant predictors..
## S3 method for class 'ssvs_mi'
plot(
x,
type = "both",
threshold = 0.5,
legend = TRUE,
est_title = NULL,
mip_title = NULL,
color = TRUE,
...
)
x |
An ssvs result object obtained from |
type |
Defaults to "both", can change to "estimate" or "MIP". |
threshold |
A numeric value (between 0 and 1) specifying the MIP threshold to highlight significant predictors. Defaults to 0.5. |
legend |
Logical indicating whether to include a legend for the threshold. Defaults to |
est_title |
A character string specifying the plot title. Defaults to |
mip_title |
A character string specifying the plot title. Defaults to |
color |
Logical indicating whether to use color to highlight thresholds. Defaults to |
... |
Ignored |
Two ggplot2
objects representing the plot of SSVS estimates and the plot of MIP with thresholds.
data(imputed_mtcars)
outcome <- 'qsec'
predictors <- c('cyl', 'disp', 'hp', 'drat', 'wt', 'vs', 'am', 'gear', 'carb','mpg')
imputation <- '.imp'
results <- ssvs_mi(data = imputed_mtcars, y = outcome, x = predictors, imp = imputation)
plot(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.