Usage Arguments Details References Examples
1 | HFB(x,alpha)
|
x |
matrix including the bootstrap of influence variables |
alpha |
minimum relative frquency tof influence variables. |
To have more reliable informative variables, we implement the HFB that run the proposed method on the resample from data.
Amiri, S., Ivo, D. (2017). Information Theoretic Approach for Genome-Wide Association Study of Parkinson's Disease.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ### obtaine the size of dataset.
#nD<-dim(SNPgroupD)[1]
#nC<-dim(SNPgroupC)[1]
### number of bootstrap
#B<-500
#vsfeentR<-list()
### the following loop achieves the bootsrap and obtain the informative variables
#for(b in 1:B){
# sxx1<-sort(unique(sample(nD,nD,replace=TRUE)))
# sxx2<-sort(unique(sample(nC,nC,replace=TRUE)))
# SNPgroupDR<-SNPgroupD[ sxx1,]
# SNPgroupCR<-SNPgroupC[ sxx2,]
# DfeR<-IBC(SNPgroupDR)
# CfeR<-IBC(SNPgroupCR)
# vsfeentR[[b]]<-which(CfeR/2>DfeR)
#}
#Alpha<-0.8
#hfb<-HFB(vsfeentR,Alpha)
#length(hfb)
#### the following codes give the dengrogram on the informative variables
#### obtained via HFB
#dt1<-Distwhole(SNPgroupD,SNPgroupC,vsfeent1)
### Calculate hierarchial dendrogram
#hcdt1<-hclust(as.dist(dt1), method = "average", members = NULL)
### plot the dendrogram
#plot(hcdt1,label=labfem)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.