knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval=T, echo = T ) library(magrittr) library(DynareR)
DynareR is an R package that can run Dynare
program from R Markdown.
Users need the following in order to knit this document:
Dynare 4.6.1 or above
Octave 5.2.0 or above
Dynare is installed in the standard location as follows:
/usr/lib/dynare/matlab
for Linux
/usr/lib/dynare/matlab
for macOS
c:/dynare/x.y/matlab
for Windows
, where x.y
is Dynare
version number.
If dynare
and Octave
are installed in standard location, DynareR
package will take care of the configurations, which include adding matlab
directory to path, using the latest installed dynare
and so on. Otherwise, users have to specify the matlab
folder using add_path
function, set the Octave
path using the set_octave_path
function, or set dynare
version using the set_dynare_version
function.
DynareR can be installed using the following commands in R.
install.packages("DynareR") OR devtools::install_github('sagirumati/DynareR')
Please load the DynareR package as follows:
```r `r ''` library(DynareR) ```
Then create a chunk for dynare
(adopted from Dynare example file bkk
) as shown below:
```{dynare bkk,eval=T} `r ''` /* * This file implements the multi-country RBC model with time to build, * described in Backus, Kehoe and Kydland (1992): "International Real Business * Cycles", Journal of Political Economy, 100(4), 745-775. * * The notation for the variable names are the same in this file than in the paper. * However the timing convention is different: we had to taken into account the * fact that in Dynare, if a variable is denoted at the current period, then * this variable must be also decided at the current period. * Concretely, here are the differences between the paper and the model file: * - z_t in the model file is equal to z_{t+1} in the paper * - k_t in the model file is equal to k_{t+J} in the paper * - s_t in the model file is equal to s_{J,t}=s_{J-1,t+1}=...=s_{1,t+J-1} in the paper * * The macroprocessor is used in this file to create a loop over countries. * Only two countries are used here (as in the paper), but it is easy to add * new countries in the corresponding macro-variable and completing the * calibration. * * The calibration is the same than in the paper. The results in terms of * moments of variables are very close to that of the paper (but not equal * since the authors a different solution method). * * This implementation was written by Sebastien Villemot. Please note that the * following copyright notice only applies to this Dynare implementation of the * model. */ /* * Copyright (C) 2010 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see <http://www.gnu.org/licenses/>. */ @#define countries = [ "H", "F" ] @#define J = 4 @#for co in countries var C_@{co} L_@{co} N_@{co} A_@{co} K_@{co} Z_@{co} X_@{co} LAMBDA_@{co} S_@{co} NX_@{co} Y_@{co}; varexo E_@{co}; parameters beta_@{co} alpha_@{co} eta_@{co} mu_@{co} gamma_@{co} theta_@{co} nu_@{co} sigma_@{co} delta_@{co} phi_@{co} psi_@{co} rho_@{co}_@{co}; @#endfor // Lagrange multiplier of aggregate constraint var LGM; parameters rho_@{countries[1]}_@{countries[2]} rho_@{countries[2]}_@{countries[1]}; model; @#for co in countries Y_@{co} = ((LAMBDA_@{co}*K_@{co}(-@{J})^theta_@{co}*N_@{co}^(1-theta_@{co}))^(-nu_@{co}) + sigma_@{co}*Z_@{co}(-1)^(-nu_@{co}))^(-1/nu_@{co}); K_@{co} = (1-delta_@{co})*K_@{co}(-1) + S_@{co}; X_@{co} = @# for lag in (-J+1):0 + phi_@{co}*S_@{co}(@{lag}) @# endfor ; A_@{co} = (1-eta_@{co})*A_@{co}(-1) + N_@{co}; L_@{co} = 1 - alpha_@{co}*N_@{co} - (1-alpha_@{co})*eta_@{co}*A_@{co}(-1); // Utility multiplied by gamma # U_@{co} = (C_@{co}^mu_@{co}*L_@{co}^(1-mu_@{co}))^gamma_@{co}; // FOC with respect to consumption psi_@{co}*mu_@{co}/C_@{co}*U_@{co} = LGM; // FOC with respect to labor // NOTE: this condition is only valid for alpha = 1 psi_@{co}*(1-mu_@{co})/L_@{co}*U_@{co}*(-alpha_@{co}) = - LGM * (1-theta_@{co})/N_@{co}*(LAMBDA_@{co}*K_@{co}(-@{J})^theta_@{co}*N_@{co}^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}^(1+nu_@{co}); // FOC with respect to capital @# for lag in 0:(J-1) +beta_@{co}^@{lag}*LGM(+@{lag})*phi_@{co} @# endfor @# for lag in 1:J -beta_@{co}^@{lag}*LGM(+@{lag})*phi_@{co}*(1-delta_@{co}) @# endfor = beta_@{co}^@{J}*LGM(+@{J})*theta_@{co}/K_@{co}*(LAMBDA_@{co}(+@{J})*K_@{co}^theta_@{co}*N_@{co}(+@{J})^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}(+@{J})^(1+nu_@{co}); // FOC with respect to stock of inventories LGM=beta_@{co}*LGM(+1)*(1+sigma_@{co}*Z_@{co}^(-nu_@{co}-1)*Y_@{co}(+1)^(1+nu_@{co})); // Shock process @# if co == countries[1] @# define alt_co = countries[2] @# else @# define alt_co = countries[1] @# endif (LAMBDA_@{co}-1) = rho_@{co}_@{co}*(LAMBDA_@{co}(-1)-1) + rho_@{co}_@{alt_co}*(LAMBDA_@{alt_co}(-1)-1) + E_@{co}; NX_@{co} = (Y_@{co} - (C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1)))/Y_@{co}; @#endfor // World ressource constraint @#for co in countries +C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1) @#endfor = @#for co in countries +Y_@{co} @#endfor ; end; @#for co in countries beta_@{co} = 0.99; mu_@{co} = 0.34; gamma_@{co} = -1.0; alpha_@{co} = 1; eta_@{co} = 0.5; // Irrelevant when alpha=1 theta_@{co} = 0.36; nu_@{co} = 3; sigma_@{co} = 0.01; delta_@{co} = 0.025; phi_@{co} = 1/@{J}; psi_@{co} = 0.5; @#endfor rho_H_H = 0.906; rho_F_F = 0.906; rho_H_F = 0.088; rho_F_H = 0.088; initval; @#for co in countries LAMBDA_@{co} = 1; NX_@{co} = 0; Z_@{co} = 1; A_@{co} = 1; L_@{co} = 0.5; N_@{co} = 0.5; Y_@{co} = 1; K_@{co} = 1; C_@{co} = 1; S_@{co} = 1; X_@{co} = 1; E_@{co} = 0; @#endfor LGM = 1; end; shocks; var E_H; stderr 0.00852; var E_F; stderr 0.00852; corr E_H, E_F = 0.258; end; steady; check; stoch_simul(order=1, hp_filter=1600); ```
```{dynare bkk,echo=F,eval=T} / * This file implements the multi-country RBC model with time to build, * described in Backus, Kehoe and Kydland (1992): "International Real Business * Cycles", Journal of Political Economy, 100(4), 745-775. * The notation for the variable names are the same in this file than in the paper. * However the timing convention is different: we had to taken into account the * fact that in Dynare, if a variable is denoted at the current period, then * this variable must be also decided at the current period. * Concretely, here are the differences between the paper and the model file: * - z_t in the model file is equal to z_{t+1} in the paper * - k_t in the model file is equal to k_{t+J} in the paper * - s_t in the model file is equal to s_{J,t}=s_{J-1,t+1}=...=s_{1,t+J-1} in the paper * The macroprocessor is used in this file to create a loop over countries. * Only two countries are used here (as in the paper), but it is easy to add * new countries in the corresponding macro-variable and completing the * calibration. * The calibration is the same than in the paper. The results in terms of * moments of variables are very close to that of the paper (but not equal * since the authors a different solution method). * This implementation was written by Sebastien Villemot. Please note that the * following copyright notice only applies to this Dynare implementation of the * model. /
/ * Copyright (C) 2010 Dynare Team * This file is part of Dynare. * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with Dynare. If not, see http://www.gnu.org/licenses/. /
@#define countries = [ "H", "F" ] @#define J = 4
@#for co in countries var C_@{co} L_@{co} N_@{co} A_@{co} K_@{co} Z_@{co} X_@{co} LAMBDA_@{co} S_@{co} NX_@{co} Y_@{co};
varexo E_@{co};
parameters beta_@{co} alpha_@{co} eta_@{co} mu_@{co} gamma_@{co} theta_@{co} nu_@{co} sigma_@{co} delta_@{co} phi_@{co} psi_@{co} rho_@{co}_@{co}; @#endfor
// Lagrange multiplier of aggregate constraint var LGM;
parameters rho_@{countries[1]}@{countries[2]} rho@{countries[2]}_@{countries[1]};
model; @#for co in countries
Y_@{co} = ((LAMBDA_@{co}K_@{co}(-@{J})^theta_@{co}N_@{co}^(1-theta_@{co}))^(-nu_@{co}) + sigma_@{co}Z_@{co}(-1)^(-nu_@{co}))^(-1/nu_@{co}); K_@{co} = (1-delta_@{co})K_@{co}(-1) + S_@{co}; X_@{co} = @# for lag in (-J+1):0 + phi_@{co}*S_@{co}(@{lag}) @# endfor ;
A_@{co} = (1-eta_@{co})A_@{co}(-1) + N_@{co}; L_@{co} = 1 - alpha_@{co}N_@{co} - (1-alpha_@{co})eta_@{co}A_@{co}(-1);
// Utility multiplied by gamma
// FOC with respect to consumption psi_@{co}mu_@{co}/C_@{co}U_@{co} = LGM;
// FOC with respect to labor // NOTE: this condition is only valid for alpha = 1 psi_@{co}(1-mu_@{co})/L_@{co}U_@{co}(-alpha_@{co}) = - LGM * (1-theta_@{co})/N_@{co}(LAMBDA_@{co}K_@{co}(-@{J})^theta_@{co}N_@{co}^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}^(1+nu_@{co});
// FOC with respect to capital @# for lag in 0:(J-1) +beta_@{co}^@{lag}LGM(+@{lag})phi_@{co} @# endfor @# for lag in 1:J -beta_@{co}^@{lag}LGM(+@{lag})phi_@{co}(1-delta_@{co}) @# endfor = beta_@{co}^@{J}LGM(+@{J})theta_@{co}/K_@{co}(LAMBDA_@{co}(+@{J})K_@{co}^theta_@{co}N_@{co}(+@{J})^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}(+@{J})^(1+nu_@{co});
// FOC with respect to stock of inventories LGM=beta_@{co}LGM(+1)(1+sigma_@{co}Z_@{co}^(-nu_@{co}-1)Y_@{co}(+1)^(1+nu_@{co}));
// Shock process @# if co == countries[1] @# define alt_co = countries[2] @# else @# define alt_co = countries[1] @# endif (LAMBDA_@{co}-1) = rho_@{co}@{co}(LAMBDA_@{co}(-1)-1) + rho_@{co}_@{alt_co}(LAMBDA@{alt_co}(-1)-1) + E_@{co};
NX_@{co} = (Y_@{co} - (C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1)))/Y_@{co};
@#endfor
// World ressource constraint @#for co in countries +C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1) @#endfor = @#for co in countries +Y_@{co} @#endfor ;
end;
@#for co in countries beta_@{co} = 0.99; mu_@{co} = 0.34; gamma_@{co} = -1.0; alpha_@{co} = 1; eta_@{co} = 0.5; // Irrelevant when alpha=1 theta_@{co} = 0.36; nu_@{co} = 3; sigma_@{co} = 0.01; delta_@{co} = 0.025; phi_@{co} = 1/@{J}; psi_@{co} = 0.5; @#endfor
rho_H_H = 0.906; rho_F_F = 0.906; rho_H_F = 0.088; rho_F_H = 0.088;
initval; @#for co in countries LAMBDA_@{co} = 1; NX_@{co} = 0; Z_@{co} = 1; A_@{co} = 1; L_@{co} = 0.5; N_@{co} = 0.5; Y_@{co} = 1; K_@{co} = 1; C_@{co} = 1; S_@{co} = 1; X_@{co} = 1;
E_@{co} = 0; @#endfor
LGM = 1; end;
shocks; var E_H; stderr 0.00852; var E_F; stderr 0.00852; corr E_H, E_F = 0.258; end;
steady; check;
stoch_simul(order=1, hp_filter=1600,graph_format = (pdf));
The above chunk creates a Dynare program with the chunk’s content, then automatically run Dynare, which will save Dynare outputs in the current directory. Please note that DynareR uses the chunk name as the model name. So, the outpus of Dynare are saved in a folder with its respective chunk name. Thus a new folder `bkk/` will be created in your current working directory. By default, `dynare` chunk imports log output as a list of dataframes, which can be accessed via `dynare$modelName`. Therefore to access the outputs of the `bkk` model produced by the `dynare` chunk, use `dynare$bkk`. Use inline code `` `r knitr::inline_expr('dynare$bkk$moments[2,3]', 'md')` `` to access the value of second row and third column of the `moments`, which is `r dynare$bkk$moments[2,3]`. # Plotting the IRF The Impulse Response Function (IRF) is saved by default in `bkk/bkk/graphs/` folder with the IRF's name `bkk_IRF_E_H2.pdf`, where `bkk` is the Dynare model's name. Therefore, you need to add `stoch_simul(graph_format = (pdf))` to change the default saving behaviour of `Dynare` from `eps` to `pdf`. # DynareR functions for base R The DynareR package is also designed to work with base R. The following functions show how to work with DynareR outside the R Markdown or Quarto documents. ## The include_IRF function Use this function to embed the graphs Impulse Response Function (IRF) in R Markdown or Quarto document. The Impulse Response Function (IRF) of the `bkk` model can be fetched using the following R chunk. Note that only the last part of the IRF's name (`E_H2`) is needed, that is `bkk_IRF_` is excluded. Also note that `out.extra='trim={0cm 7cm 0cm 7cm},clip'` is used to trim the white space above and below the IRF. ```` ```r,clip',fig.cap="Another of figure generated from Dynare software"} `r ''` include_IRF("bkk","E_H2") # Alternatively, use the path argument
````
```r,clip',fig.cap="Another of figure generated from Dynare software"}
include_IRF(model="bkk",IRF = "E_H2")
include_IRF(path="bkk/bkk/graphs/bkk_IRF_E_H2.pdf")
However, Dynare figure can only be dynamically included if the output format is pdf as Dynare produces pdf and eps graphs only. ## The write_dyn function This function writes a new `dyn` file. Use `write_dyn(code="code",model="someModel")` if you want the `Dynare` file to live in the current working directory. Use `write_dyn(code="code",model="path/to/someDirectory/someModel")` if you want the Dynare file to live in the path different from the current working directory. ```r dynareCodes='var y, c, k, a, h, b; varexo e, u; parameters beta, rho, alpha, delta, theta, psi, tau; alpha = 0.36; rho = 0.95; tau = 0.025; beta = 0.99; delta = 0.025; psi = 0; theta = 2.95; phi = 0.1; model; c*theta*h^(1+psi)=(1-alpha)*y; k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1))) *(exp(b(+1))*alpha*y(+1)+(1-delta)*k)); y = exp(a)*(k(-1)^alpha)*(h^(1-alpha)); k = exp(b)*(y-c)+(1-delta)*k(-1); a = rho*a(-1)+tau*b(-1) + e; b = tau*a(-1)+rho*b(-1) + u; end; initval; y = 1.08068253095672; c = 0.80359242014163; h = 0.29175631001732; k = 11.08360443260358; a = 0; b = 0; e = 0; u = 0; end; shocks; var e; stderr 0.009; var u; stderr 0.009; var e, u = phi*0.009*0.009; end; stoch_simul;' write_dyn(code=dynareCodes, model="example1") write_dyn(code=dynareCodes,model="DynareR/write_dyn/example1")
This function writes a new mod
file.
Use write_mod(code="code",model="someModel")
if you want the Dynare
file to live in the current working directory. Use write_mod(code="code",model="path/to/someDirectory/someModel")
if you want the Dynare file to live in the path different from the current working directory.
DynareCodes='var y, c, k, a, h, b; varexo e, u; parameters beta, rho, alpha, delta, theta, psi, tau; alpha = 0.36; rho = 0.95; tau = 0.025; beta = 0.99; delta = 0.025; psi = 0; theta = 2.95; phi = 0.1; model; c*theta*h^(1+psi)=(1-alpha)*y; k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1))) *(exp(b(+1))*alpha*y(+1)+(1-delta)*k)); y = exp(a)*(k(-1)^alpha)*(h^(1-alpha)); k = exp(b)*(y-c)+(1-delta)*k(-1); a = rho*a(-1)+tau*b(-1) + e; b = tau*a(-1)+rho*b(-1) + u; end; initval; y = 1.08068253095672; c = 0.80359242014163; h = 0.29175631001732; k = 11.08360443260358; a = 0; b = 0; e = 0; u = 0; end; shocks; var e; stderr 0.009; var u; stderr 0.009; var e, u = phi*0.009*0.009; end; stoch_simul;' write_mod(model="example1",code=dynareCodes) write_mod(code=dynareCodes,model="DynareR/write_mod/example1")
Create and run Dynare mod
file
Use this function to create and run Dynare mod file. Use run_dynare(code="code",model="someModel")
if you want the Dynare files to live in the current working directory. Use run_dynare(code="code",model="path/to/someDirectory/someModel")
if you want the Dynare files to live in the path different from the current working directory. Use import_log=T
argument to return the dynare
log file as list of dataframes in an environment dynare
, which can be accessed via dynare$modelName
.
DynareCodes='var y, c, k, a, h, b; varexo e, u; parameters beta, rho, alpha, delta, theta, psi, tau; alpha = 0.36; rho = 0.95; tau = 0.025; beta = 0.99; delta = 0.025; psi = 0; theta = 2.95; phi = 0.1; model; c*theta*h^(1+psi)=(1-alpha)*y; k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1))) *(exp(b(+1))*alpha*y(+1)+(1-delta)*k)); y = exp(a)*(k(-1)^alpha)*(h^(1-alpha)); k = exp(b)*(y-c)+(1-delta)*k(-1); a = rho*a(-1)+tau*b(-1) + e; b = tau*a(-1)+rho*b(-1) + u; end; initval; y = 1.08068253095672; c = 0.80359242014163; h = 0.29175631001732; k = 11.08360443260358; a = 0; b = 0; e = 0; u = 0; end; shocks; var e; stderr 0.009; var u; stderr 0.009; var e, u = phi*0.009*0.009; end; stoch_simul;' run_dynare(code=DynareCodes,model="example1",import_log = T) run_dynare(code=DynareCodes,model="DynareR/run_dynare/example1")
Run multiple existing mod
or dyn
files.
Use this function to execute multiple existing Dynare files. Use run_models(model="someModel")
if the Dynare files live in the current working directory. Use run_models(model="path/to/someDirectory/someModel")
if the Dynare files live in the path different from the current working directory. Use run_models()
to exectute all the dynare
models in the current working directory. Use run_models("path/to/someDirectory*)
to run all the dynare
models in path/to/someDirectory
.
Where agtrend.mod
, bkk.mod
and example1.mod
are the Dynare model files (with mod
or dyn
extension), which live in the current working directory.
demo(agtrend) demo(bkk) demo(example1) # Provide the list of the `Dynare` files in a vector # Ensure that "agtrend.mod", "bkk.mod" and "example1.mod" # live in the current working directory # Copy the dynare files to the current working directory lapply(c("agtrend","bkk","example1"),\(x) file.copy(paste0(x,"/",x,".mod"),".")) run_models(c("agtrend","bkk","example1")) # Run the models in the vector.
To run all Dynare
models that live in the current working directory, use the following:
run_models() # Run all models in Current Working Directory.
To run all Dynare
models that live in particular path (for example 'DynareR/run_dynare/' folder), use the following:
# Copy the dynare files to the 'DynareR/run_dynare' directory lapply(c("agtrend","bkk","example1"),\(x) file.copy(paste0(x,".mod"),"DynareR/run_dynare")) run_models(model = 'DynareR/run_dynare*') # notice the * at the end
This function returns the dynare
log output as a list of dataframes, which include summary
, shocks
, policy
, moments
, decomposition
, correlation
and autocorrelation
. The list is accessible via dynare$modelName
. if the model name is bkk
, the policy variables can be obtained via dynare$bkk$policy
as a dataframe.
import_log(model="bkk") import_log(path="bkk/bkk.log") knitr::kable(dynare$bkk$autocorrelation) # %>% kableExtra::kable_styling(latex_options = c("basic","hold_position","scale_down")) %>% # kableExtra::footnote(general="Some footnote with equation $\\alpha x^2+\\beta x+c=0$", general_title = "*",footnote_as_chunk=T,threeparttable=T,escape=F) %>% # kableExtra::row_spec(0,bold=T)
On Windows, you can set the version of dynare you want to use. By default, DynareR
package does this for you if the dynare version ranges from 4.6.1 to 9.9. However, if you are using the development version of dynare
, for example version 6-unstable-2022-04-03-0800-700a0e3a
, you can override the default as follows
set_dynare_version("6-unstable-2022-04-03-0800-700a0e3a")
You can use this function if Octave
is not installed in the standard location
set_octave_path('C:/Program Files/GNU Octave/Octave-6.4.0/mingw64/bin/octave20.exe')
This function is a wrapper of addpath
in Octave
. If dynare
is not installed in the standard location, use this function to add the matlab
subdirectory. By default, DynareR
does this for if dynare
is installed in the standard location.
add_path('/usr/lib/dynare/matlab')# Default for Linux add_path('c:/dynare/5.1/matlab') # Default for Windows, but 5.1 can change if later version of # `Dynare` is installed. add_path('/usr/lib/dynare/matlab') # Default for macOS
The demo files are included and can be accessed via demo(package="DynareR")
demo(run_dynare) demo(run_models) demo(import_log)
Template for R Markdown is created. Go to file->New File->R Markdown-> From Template->DynareR
.
Please download the example files from Github.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.