ZABP: Zero-Adjusted Beta-Prime (ZABP) distribution for fitting a...

Description Usage Arguments Author(s) References

Description

The functions dZABP, pZABP, qZABP and rZABP define the density, distribution function, quantile function and random generation for the ZABP.

Usage

1
2
3
4
5
6
7
dZABP(x, mu = 1.0, sigma = 1.0, nu = 0.1, log = FALSE)

pZABP(q, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)

qZABP(p, mu = 1, sigma = 1, nu = 0.1, lower.tail = TRUE, log.p = FALSE)

rZABP(n, mu = 1, sigma = 1, nu = 0.1)

Arguments

x, q

vector of quantiles.

mu

vector of scale parameter values.

sigma

vector of shape parameter values.

nu

vector of mixture parameter values.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Author(s)

Manoel Santos-Neto manoel.ferreira@ufcg.edu.br, F.J.A. Cysneiros cysneiros@de.ufpe.br, Victor Leiva victorleivasanchez@gmail.com and Michelli Barros michelli.karinne@gmail.com

References

Leiva, V., Santos-Neto, M., Cysneiros, F.J.A., Barros, M. (2016) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution. Applied Stochastic Models in Business and Industry., 32(1), 74–89. doi:10.1002/asmb.2124.

Santos-Neto, M., Cysneiros, F.J.A., Leiva, V., Barros, M. (2016) Reparameterized Birnbaum-Saunders regression models with varying precision. Electronic Journal of Statistics, 10, 2825–2855. doi: 10.1214/16-EJS1187.


santosneto/BPmodel documentation built on Jan. 18, 2022, 4:53 p.m.