IRON: The IRON distribution.

Description Usage Arguments Details Value Author(s) Examples

Description

Density function, distribution function, quantile function and random generation for the IRON distribution.

Usage

1
2
3
4
5
6
7
diron(x, family = "norm", tau, shape, scale, kappa = NULL, log = FALSE, ...)

qiron(p, shape, scale, tau, family = "norm", ...)

piron(q, shape, scale, tau, family = "norm", log.p = FALSE, ...)

riron(n, shape, scale, tau, family = "normal", df = 4, kappa = NULL, ...)

Arguments

x, q

vetor of quantiles.

family

kernel used.

tau

quantile value.

shape

shape parameter.

scale

scale parameter.

kappa

shape parameter.

log, log.p

logical; if TRUE, the log-density or log(p) is used.

...

additional arguments to be passed.

p

vector of probabilities.

n

number of observations.

df

degrees of freedom.

Details

The density function of the IRON distribution is

g(t|λ,β,α) = α f(a_t)[F(a_t)]^{α-1} \vdot \frac{t^{-3/2}(t+β)}{2λ√{β}}\qc t,λ,β,α,

where f(.) and F(.) are, respectively, the density function and cumulative distribution of a symmetric distribution.

Value

diron gives the density, piron gives the distribution function, qiron gives the quantile function and riron generate pseudo-random numbers.

Author(s)

Manoel Santos-Neto manoel.ferreira at professor.ufcg.edu.br and Diego I. Gallardo diego.gallardo.mateluna at gmail.com

Examples

1
2
3
4
diron(x = 10, tau = 0.5, shape = 1, scale = 1) #Birnbaum-Saunders distribution
piron(q = 10, tau = 0.5, shape = 1, scale = 1) #Birnbaum-Saunders distribution
qiron(p = 0.5, tau = 0.5, shape = 1, scale = 1) #Birnbaum-Saunders distribution
riron(n = 10, tau = 0.5, shape = 1, scale = 1) #Birnbaum-Saunders distribution

santosneto/IRON documentation built on Jan. 21, 2022, 4:12 p.m.