Description Usage Arguments Details Value Note Author(s) Examples
The fuction RBS() defines the BS distribution, a two paramenter
distribution, for a gamlss.family object to be used in GAMLSS fitting using using the
function gamlss(), with mean equal to the parameter mu and sigma
equal the precision parameter. The functions dRBS, pRBS, qRBS and
rBS define the density, distribution function, quantile function and random
genetation for the RBS parameterization of the RBS distribution.
1 2 3 4 5 6 7 | RBS(mu.link = "identity", sigma.link = "identity")
dRBS(x, mu = 1, sigma = 1, log = FALSE)
pRBS(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qRBS(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rRBS(n, mu = 1, sigma = 1)
plotRBS(mu = .5, sigma = 1, from = 0, to = 0.999, n = 101, ...)
meanRBS(obj)
|
mu |
vector of scale parameter values |
sigma |
vector of shape parameter values |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
n |
number of observations. If |
... |
other graphical parameters for plotting |
mu.link |
object for which the extraction of model residuals is meaningful. |
sigma.link |
type of residual to be used. |
x, q |
vector of quantiles |
log, |
log.p logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
obj |
a fitted RBS object |
The parametrization of the normal distribution given in the function RBS() is
f_{Y}(y;μ,δ)=\frac{\exp≤ft(δ/2\right)√{δ+1}}{4√{πμ}\,y^{3/2}} ≤ft[y+\frac{δ μ}{δ+1}\right] \exp≤ft(-\frac{δ}{4} ≤ft[\frac{y\{δ+1\}}{δμ}+\frac{δμ}{y\{δ+1\}}\right]\right) y>0.
returns a gamlss.family object which can be used to fit a normal distribution in the gamlss() function.
For the function RBS(), mu is the mean and sigma is the precision parameter of the Birnbaum-Saunders distribution.
Manoel Santos-Neto manoel.ferreira@ufcg.edu.br, F.J.A. Cysneiros cysneiros@de.ufpe.br, Victor Leiva victorleivasanchez@gmail.com and Michelli Barros michelli.karinne@gmail.com
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.