| CV.SuperLearner_tidiers | R Documentation | 
This method extends tidy to tidy the results from a
CV.SuperLearner fit (screening, prediction, or
both) into a summary.
## S3 method for class 'CV.SuperLearner'
tidy(x, ...)
| x | object of class  | 
| ... | Passed through to  | 
A data.frame without rownames. Column names included depend
on the supplied value for the optional tidy.SuperLearner
argument algorithm. See tidy.SuperLearner for more
details on returned data.frame. Note that the resulting
data.frame from tidy.CV.SuperLearner will contain one
additional column, however: "fold," indicating the (outer) SuperLearner
cross-validation fold number.
tidy.SuperLearner
# based on an example in the SuperLearner package
set.seed(1)
n <- 100
p <- 10
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
X <- data.frame(X)
Y <- rbinom(n, 1, plogis(.2*X[, 1] + .1*X[, 2] - .2*X[, 3] + .1*X[, 3]*X[, 4] - .2*abs(X[, 4])))
library(SuperLearner)
cvsl = CV.SuperLearner(Y, X, family = binomial(),
                       SL.library = list(c("SL.mean", "screen.FSelector.oneR"),
                                         c("SL.mean", "screen.wgtd.ttest"),
                                         c("SL.glm", "screen.FSelector.oneR"),
                                         c("SL.glm", "screen.wgtd.ttest")),
                       cvControl = list(V = 2),
                       innerCvControl = list(list(V = 2)))
library(broom)
tidy(cvsl)
tidy(cvsl, algorithm = "screening")
tidy(cvsl, algorithm = "both")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.