The complete R package logreg2phRonly
and code for the simulation settings included in the paper. This is an alternate implementation of logreg2ph
that uses strictly R code.
Lotspeich, SC, Shepherd, BE, Amorim, GC, Shaw, PA, Tao, R. Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national HIV research cohort. Biometrics. 2021; 1– 12. https://doi.org/10.1111/biom.13512
To install the package, run the following in your R
console:
devtools::install_github("sarahlotspeich/logreg2ph_R_only")
Inside the simulations
subdirectory, you will find the following:
Table1_SimSetup.R
: simulations with outcome misclassification and a binary error-prone covariate, intended to inspect increasing Phase I and Phase II sample sizesTables2&3_SimSetup.R
: Simulations with outcome misclassification and a continuous covariate with additive errors, intended to inspect varied error variance Table4_SimSetup.R
: Simulations with outcome misclassification and a continuous covariate with additive errors, intended to inspect varied outcome error ratesTableS2_SimSetup.R
: Simulations with outcome misclassification and binary error-prone covariate, intended to inspect robustness of the fully-parametric MLE and proposed SMLE under complex covariate errorTableS3_SimSetup.R
: Simulations with outcome misclassification and binary error-prone covariate, intended to inspect robustness of the fully-parametric MLE and proposed SMLE under complex outcome and covariate errorTableS4_SimSetup.R
: Simulations with continuous covariate with additive errors (classical measurement error), intended to compare performance of proposed SMLE to traditional regression calibration (RC) approachTableS5_SimSetup.R
: Simulation results for the naive estimator under outcome misclassification and a continuous covariate under varied parameterizationsTableS6_SimSetup.R
: Simulations with outcome misclassification and continuous covariate with differentially biased additive errors, intended to demonstrate robustness of the proposed SMLE to different covariate error typesTableS7_SimSetup.R
: Simulations with outcome misclassification and continuous covariate with differential multiplicative errors, intended to demonstrate robustness of the proposed SMLE to different covariate error typesInside each of the files above, you will find code to generate the appropriate data for that simulation setting, e.g.,
```{r, eval = F, tidy = TRUE} set.seed(918)
N <- 1000 # Phase I size = N n <- 250 # Phase II/audit size = n
Xa <- rbinom(n = N, size = 1, prob = 0.25) Xb <- rbinom(n = N, size = 1, prob = 0.5) Y <- rbinom(n = N, size = 1, prob = (1 + exp(-(- 0.65 - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))
sensX <- specX <- 0.75 delta0 <- - log(specX / (1 - specX)) delta1 <- - delta0 - log((1 - sensX) / sensX) Xbstar <- rbinom(n = N, size = 1, prob = (1 + exp(- (delta0 + delta1 * Xb + 0.5 * Xa))) ^ (- 1))
sensY <- 0.95 specY <- 0.90 theta0 <- - log(specY / (1 - specY)) theta1 <- - theta0 - log((1 - sensY) / sensY) Ystar <- rbinom(n = N, size = 1, prob = (1 + exp(- (theta0 - 0.2 * Xbstar + theta1 * Y - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))
Then, the user has the option of two audit designs: simple random sampling (SRS) or 1:1 case-control sampling based on Y* (naive case-control). Based on these designs, the validation indicators V are generated as follows:
```{r, eval = FALSE}
# Choose audit design: SRS or -----------------------------
## Naive case-control: case-control based on Y^* ----
audit <- "SRS" #or "Naive case-control"
# Draw audit of size n based on design --------------------
## V is a TRUE/FALSE vector where TRUE = validated --------
if(audit == "SRS")
{
V <- seq(1, N) %in% sample(x = seq(1, N), size = n, replace = FALSE)
}
if(audit == "Naive case-control")
{
V <- seq(1, N) %in% c(sample(x = which(Ystar == 0), size = 0.5 * n, replace = FALSE),
sample(x = which(Ystar == 1), size = 0.5 * n, replace = FALSE))
}
Finally, combine the generated data and validation indicators into an analytical dataset:
```{r, eval = F, tidy = T}
sdat <- cbind(Y, Xb, Ystar, Xbstar, Xa, V)
sdat[!V, c("Y", "Xb")] <- NA
### Running Estimator Code
The `R` scripts each contain implementations for the estimators discussed in the paper. Examples of each are provided below:
#### 1. Naive Analysis
```{r, eval = F, tidy = T}
naive <- glm(Ystar ~ Xbstar + Xa, family = "binomial", data = data.frame(sdat))
beta_naive <- naive$coefficients[2]
se_naive <- sqrt(diag(vcov(naive)))[2]
```{r, eval = F, tidy = T} cc <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial") beta_cc <- cc$coefficients[2] se_cc <- sqrt(diag(vcov(cc)))[2]
#### 3. Horvitz--Thompson Estimator (for Naive Case-Control Audit Only)
```{r, eval = F, tidy = T}
library(sandwich)
if (audit == "Naive case-control") {
sample_wts <- ifelse(Ystar[V] == 0, 1 / ((0.5 * n) / (table(Ystar)[1])), 1 / ((0.5 * n) / (table(Ystar)[2])))
ht <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial",
weights = sample_wts)
beta_ht <- ht$coefficients[2]
se_ht <- sqrt(diag(sandwich(ht)))[2]
}
```{r, eval = F, tidy = T}
inf.fun <- function(fit) { dm <- model.matrix(fit) Ihat <- (t(dm) %% (dm * fit$fitted.values * (1 - fit$fitted.values))) / nrow(dm) ## influence function infl <- (dm * resid(fit, type = "response")) %% solve(Ihat) infl }
naive_infl <- inf.fun(naive) # error-prone influence functions based on naive model colnames(naive_infl) <- paste0("if", 1:3)
sdat <- cbind(id = 1:N, sdat, naive_infl)
library(survey) if (audit == "SRS") { sstudy <- twophase(id = list(~id, ~id), data = data.frame(sdat), subset = ~V) } else if (audit == "Naive case-control") { sstudy <- twophase(id = list(~id, ~id), data = data.frame(sdat), strat = list(NULL, ~Ystar), subset = ~V) } scal <- calibrate(sstudy, ~ if1 + if2 + if3, phase = 2, calfun = "raking")
rake <- svyglm(Y ~ Xb + Xa, family = "binomial", design = scal) beta_rake <- rake$coefficients[2] se_rake <- sqrt(diag(vcov(rake)))[2]
#### 5. Maximum Likelihood Estimator (MLE) (for Binary Xb* Only)
```{r, eval = F, tidy = T}
# Script: two-phase log-likelihood specification adapted from Tang et al. (2015) named ~/code/Tang_twophase_loglik_binaryX.R
source("Tang_twophase_loglik_binaryX.R")
fit_Tang <- nlm(f = Tang_twophase_loglik,
p = rep(0, 12),
hessian = TRUE,
Val = "V",
Y_unval = "Ystar",
Y_val="Y",
X_unval = "Xbstar",
X_val = "Xb",
C = "Xa",
data = sdat)
beta_mle <- fit_Tang$estimate[10]
se_mle <- sqrt(diag(solve(fit_Tang$hessian)))[10]
```{r, eval = F, tidy = T}
nsieve <- 4 B <- matrix(0, nrow = N, ncol = nsieve) B[which(Xa == 0 & Xbstar == 0), 1] <- 1 B[which(Xa == 0 & Xbstar == 1), 2] <- 1 B[which(Xa == 1 & Xbstar == 0), 3] <- 1 B[which(Xa == 1 & Xbstar == 1), 4] <- 1 colnames(B) <- paste0("bs", seq(1, nsieve)) sdat <- cbind(sdat, B)
library("logreg2ph_R_only") smle <- logreg2ph(Y_unval = "Ystar", Y_val = "Y", X_unval = "Xbstar", X_val = "Xb", C = "Xa", Validated = "V", Bspline = colnames(B), data = sdat, noSE = FALSE, MAX_ITER = 1000, TOL = 1E-4) beta_smle <- smle$Coefficients$Coefficient[2] se_smle <- smle$Coefficients$SE[2] ```
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.