Codes for generating Plots.^[See childRmd/_13plots.Rmd
file for other codes]
dependent <- c("dependent1", "dependent2" ) explanatory <- c("explanatory1", "explanatory2" )
mydataCategorical <- mydata %>% select(-var1, -var2 )
mydataCategorical_variable <- explanatory[1] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[2] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[3] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[4] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[5] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[6] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[7] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[8] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[9] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[10] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[11] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[12] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[13] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[14] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[15] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
mydataCategorical_variable <- NA dependent2 <- NA mydataCategorical_variable <- explanatory[16] dependent2 <- dependent[!dependent %in% mydataCategorical_variable] source(here::here("R", "gc_plot_cat.R"))
## column chart SmartEDA::ExpCatViz( Carseats, target = "Urban", fname = NULL, clim = 10, col = NULL, margin = 2, Page = c(2, 1), sample = 2 )
## Stacked bar graph SmartEDA::ExpCatViz( Carseats, target = "Urban", fname = NULL, clim = 10, col = NULL, margin = 2, Page = c(2, 1), sample = 2 )
## Variable importance graph using information values SmartEDA::ExpCatStat( Carseats, Target = "Urban", result = "Stat", Pclass = "Yes", plot = TRUE, top = 20, Round = 2 )
inspectdf::inspect_cat(starwars) %>% inspectdf::show_plot()
inspectdf::inspect_cat(starwars) %>% inspectdf::show_plot(high_cardinality = 1)
inspectdf::inspect_cat(star_1, star_2) %>% inspectdf::show_plot()
# mydataContinious
mydata %>% select(institution, starts_with("Slide")) %>% pivot_longer(cols = starts_with("Slide")) %>% ggplot(., aes(name, value)) -> p p + geom_jitter() p + geom_jitter(aes(colour = institution))
dxchanges <- mydata %>% select(bx_no, starts_with("Slide")) %>% filter(complete.cases(.)) %>% group_by(Slide1_infiltrative, Slide2_Medium, Slide3_Demarcated) %>% tally() library(ggalluvial) ggplot(data = dxchanges, aes(axis1 = Slide1_infiltrative, axis2 = Slide2_Medium, axis3 = Slide3_Demarcated, y = n)) + scale_x_discrete(limits = c("Slide1", "Slide2", "Slide3"), expand = c(.1, .05) ) + xlab("Slide") + geom_alluvium(aes(fill = Slide1_infiltrative, colour = Slide1_infiltrative )) + geom_stratum() + geom_text(stat = "stratum", label.strata = TRUE) + theme_minimal() + ggtitle("PanNET")
## Generate Boxplot by category SmartEDA::ExpNumViz( mtcars, target = "gear", type = 2, nlim = 25, fname = file.path(here::here(), "Mtcars2"), Page = c(2, 2) )
## Generate Density plot SmartEDA::ExpNumViz( mtcars, target = NULL, type = 3, nlim = 25, fname = file.path(here::here(), "Mtcars3"), Page = c(2, 2) )
## Generate Scatter plot SmartEDA::ExpNumViz( mtcars, target = "carb", type = 3, nlim = 25, fname = file.path(here::here(), "Mtcars4"), Page = c(2, 2) )
SmartEDA::ExpNumViz(mtcars, target = "am", scatter = TRUE)
R allows to build any type of interactive graphic. My favourite library is plotly that will turn any of your ggplot2 graphic interactive in one supplementary line of code. Try to hover points, to select a zone, to click on the legend.
library(ggplot2) library(plotly) library(gapminder) p <- gapminder %>% filter(year==1977) %>% ggplot( aes(gdpPercap, lifeExp, size = pop, color=continent)) + geom_point() + scale_x_log10() + theme_bw() ggplotly(p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.