Plots

Codes for generating Plots.^[See childRmd/_13plots.Rmd file for other codes]

Categorical Variables

dependent <- c("dependent1",
               "dependent2"
                 )

explanatory <- c("explanatory1",
                 "explanatory2"
                 )
mydataCategorical <- mydata %>% 
    select(-var1,
           -var2
    )
mydataCategorical_variable <- explanatory[1]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[2]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[3]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[4]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[5]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[6]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[7]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[8]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[9]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[10]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[11]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[12]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[13]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[14]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[15]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

mydataCategorical_variable <- NA
dependent2 <- NA
mydataCategorical_variable <- explanatory[16]
dependent2 <- dependent[!dependent %in% mydataCategorical_variable]
source(here::here("R", "gc_plot_cat.R"))

## column chart
SmartEDA::ExpCatViz(
  Carseats,
  target = "Urban",
  fname = NULL,
  clim = 10,
  col = NULL,
  margin = 2,
  Page = c(2, 1),
  sample = 2
)
## Stacked bar graph
SmartEDA::ExpCatViz(
  Carseats,
  target = "Urban",
  fname = NULL,
  clim = 10,
  col = NULL,
  margin = 2,
  Page = c(2, 1),
  sample = 2
)
## Variable importance graph using information values
SmartEDA::ExpCatStat(
  Carseats,
  Target = "Urban",
  result = "Stat",
  Pclass = "Yes",
  plot = TRUE,
  top = 20,
  Round = 2
)
inspectdf::inspect_cat(starwars) %>% inspectdf::show_plot()
inspectdf::inspect_cat(starwars) %>% 
  inspectdf::show_plot(high_cardinality = 1)
inspectdf::inspect_cat(star_1, star_2) %>% inspectdf::show_plot()

Plots

Continious Variables

# mydataContinious
mydata %>%
    select(institution, starts_with("Slide")) %>%
    pivot_longer(cols = starts_with("Slide")) %>%
    ggplot(., aes(name, value)) -> p
p + geom_jitter() 
p + geom_jitter(aes(colour = institution)) 
dxchanges <- mydata %>%
    select(bx_no, starts_with("Slide")) %>% 
    filter(complete.cases(.)) %>%
    group_by(Slide1_infiltrative, Slide2_Medium, Slide3_Demarcated) %>% 
    tally()

library(ggalluvial)

ggplot(data = dxchanges,
       aes(axis1 = Slide1_infiltrative, axis2 = Slide2_Medium, axis3 = Slide3_Demarcated,
           y = n)) +
  scale_x_discrete(limits = c("Slide1", "Slide2", "Slide3"),
                   expand = c(.1, .05)
                   ) +
  xlab("Slide") +
  geom_alluvium(aes(fill = Slide1_infiltrative,
                    colour = Slide1_infiltrative
                    )) +
  geom_stratum() +
  geom_text(stat = "stratum", label.strata = TRUE) +
  theme_minimal() +
  ggtitle("PanNET")
## Generate Boxplot by category
SmartEDA::ExpNumViz(
  mtcars,
  target = "gear",
  type = 2,
  nlim = 25,
  fname = file.path(here::here(), "Mtcars2"),
  Page = c(2, 2)
)
## Generate Density plot
SmartEDA::ExpNumViz(
  mtcars,
  target = NULL,
  type = 3,
  nlim = 25,
  fname = file.path(here::here(), "Mtcars3"),
  Page = c(2, 2)
)
## Generate Scatter plot
SmartEDA::ExpNumViz(
  mtcars,
  target = "carb",
  type = 3,
  nlim = 25,
  fname = file.path(here::here(), "Mtcars4"),
  Page = c(2, 2)
)
SmartEDA::ExpNumViz(mtcars, target = "am", scatter = TRUE)

Interactive graphics {#interactive}


R allows to build any type of interactive graphic. My favourite library is plotly that will turn any of your ggplot2 graphic interactive in one supplementary line of code. Try to hover points, to select a zone, to click on the legend.

library(ggplot2)
library(plotly)
library(gapminder)

p <- gapminder %>%
  filter(year==1977) %>%
  ggplot( aes(gdpPercap, lifeExp, size = pop, color=continent)) +
  geom_point() +
  scale_x_log10() +
  theme_bw()

ggplotly(p)


sbalci/histopathR documentation built on Nov. 12, 2024, 12:28 p.m.