Codes for missing data and impute.^[See childRmd/_10impute.Rmd
file for other codes]
Multiple imputation support in Finalfit
https://www.datasurg.net/2019/09/25/multiple-imputation-support-in-finalfit/
Missing data
https://finalfit.org/articles/missing.html
Plot missing data
visdat::vis_miss(mydata)
visdat::vis_miss(airquality, cluster = TRUE)
visdat::vis_miss(airquality, sort_miss = TRUE)
# https://cran.r-project.org/web/packages/dlookr/vignettes/transformation.html income <- dlookr::imputate_na(carseats, Income, US, method = "rpart") income attr(income,"var_type") attr(income,"method") attr(income,"na_pos") attr(income,"type") attr(income,"message") attr(income,"success") attr(income,"class") summary(income) plot(income)
carseats %>% mutate(Income_imp = dlookr::imputate_na(carseats, Income, US, method = "knn")) %>% group_by(US) %>% summarise(orig = mean(Income, na.rm = TRUE), imputation = mean(Income_imp))
library(mice) urban <- dlookr::imputate_na(carseats, Urban, US, method = "mice") urban summary(urban) plot(urban)
price <- dlookr::imputate_outlier(carseats, Price, method = "capping") price summary(price) plot(price)
carseats %>% mutate(Price_imp = dlookr::imputate_outlier(carseats, Price, method = "capping")) %>% group_by(US) %>% summarise(orig = mean(Price, na.rm = TRUE), imputation = mean(Price_imp, na.rm = TRUE))
carseats %>% mutate(Income_minmax = dlookr::transform(carseats$Income, method = "minmax"), Sales_minmax = dlookr::transform(carseats$Sales, method = "minmax")) %>% select(Income_minmax, Sales_minmax) %>% boxplot()
dlookr::find_skewness(carseats) dlookr::find_skewness(carseats, index = FALSE) dlookr::find_skewness(carseats, value = TRUE) dlookr::find_skewness(carseats, value = TRUE, thres = 0.1)
Advertising_log = transform(carseats$Advertising, method = "log") # Advertising_log <- transform(carseats$Advertising, method = "log+1") head(Advertising_log) summary(Advertising_log) plot(Advertising_log)
bin <- dlookr::binning(carseats$Income) bin <- binning(carseats$Income, nbins = 4, labels = c("LQ1", "UQ1", "LQ3", "UQ3")) binning(carseats$Income, nbins = 5, type = "equal") binning(carseats$Income, nbins = 5, type = "pretty") binning(carseats$Income, nbins = 5, type = "kmeans") binning(carseats$Income, nbins = 5, type = "bclust") bin summary(bin) plot(bin) carseats %>% mutate(Income_bin = dlookr::binning(carseats$Income)) %>% group_by(ShelveLoc, Income_bin) %>% summarise(freq = n()) %>% arrange(desc(freq)) %>% head(10)
bin <- dlookr::binning_by(carseats, "US", "Advertising") bin summary(bin) attr(bin, "iv") # information value attr(bin, "ivtable") # information value table plot(bin, sub = "bins of Advertising variable")
# https://cran.r-project.org/web/packages/exploreR/vignettes/exploreR.html (regressResults <- exploreR::masslm(iris, "Sepal.Length", ignore = "Species") ) exploreR::massregplot(iris, "Sepal.Length", ignore = "Species") (stand.Petals <- exploreR::standardize(iris, c("Petal.Width", "Petal.Length")) )
carseats %>% dlookr::transformation_report(target = US) carseats %>% dlookr::transformation_report(target = US, output_format = "html", output_file = "transformation.html")
inspectdf::inspect_na(starwars) inspectdf::inspect_na(starwars) %>% inspectdf::show_plot() inspectdf::inspect_na(star_1, star_2) inspectdf::inspect_na(star_1, star_2) %>% inspectdf::show_plot()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.