# CHECKED that value doesn't change for different S3 generic formats
# NOT CHECKED that actual value is correct for each metric
#####AUTOCORRELATION#####
test_that("autocorrelation metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- autocorrelation(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- autocorrelation(my_glcm)
# test
expect_equal(a, b)
})
#####CLUSTER PROMINENCE#####
test_that("cluster prominence metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- cluster_prom(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- cluster_prom(my_glcm)
# test
expect_equal(a, b)
})
#####CLUSTER SHADE#####
test_that("cluster shade metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- cluster_shade(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- cluster_shade(my_glcm)
# test
expect_equal(a, b)
})
#####CONTRAST#####
test_that("contrast metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- contrast(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- contrast(my_glcm)
# test
expect_equal(a, b)
})
#####ENERGY#####
test_that("energy metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- energy(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- energy(my_glcm)
# test
expect_equal(a, b)
})
#####ENTROPY#####
test_that("entropy metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- entropy(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- entropy(my_glcm)
# test
expect_equal(a, b)
})
#####HOMOGENEITY#####
test_that("homogeneity metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- homogeneity(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- homogeneity(my_glcm)
# test
expect_equal(a, b)
})
#####INVERSE DIFFERENCE#####
test_that("inverse difference metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- inv_diff(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- inv_diff(my_glcm)
# test
expect_equal(a, b)
})
#####MAXIMUM PROBABILITY#####
test_that("maximum probability metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- max_prob(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- max_prob(my_glcm)
# test
expect_equal(a, b)
})
#####SUM OF SQUARES#####
test_that("sum of squares metric works", {
# create fitness landscape using FitLandDF object
vals <- runif(27)
vals <- array(vals, dim = rep(3, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate metric for fitness landscape, assuming 2 discrete gray levels
a <- sum_squares(my_landscape, nlevels = 2)
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate metric for extracted GLCM
b <- sum_squares(my_glcm)
# test
expect_equal(a, b)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.