Description Usage Arguments Details Value See Also Examples
Classify observations in conjunction with wlda
.
1 | predict.wlda(object, newdata, prior = object$prior, ...)
|
object |
Object of class |
newdata |
A |
prior |
The class prior probabilities. By default the proportions in the training data set. |
... |
Further arguments. |
This function is a method for the generic function predict()
for class
"wlda"
.
It can be invoked by calling predict(x)
for an object x
of the
appropriate class, or directly by calling predict.wlda(x)
regardless of
the class of the object.
A list
with components:
class |
The predicted class labels (a |
posterior |
Matrix of class posterior probabilities. |
Other lda: wlda
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(mlbench)
data(PimaIndiansDiabetes)
train <- sample(nrow(PimaIndiansDiabetes), 500)
# weighting observations from classes pos and neg according to their
# frequency in the data set:
ws <- as.numeric(1/table(PimaIndiansDiabetes$diabetes)
[PimaIndiansDiabetes$diabetes])
fit <- wlda(diabetes ~ ., data = PimaIndiansDiabetes, weights = ws,
subset = train)
pred <- predict(fit, newdata = PimaIndiansDiabetes[-train,])
mean(pred$class != PimaIndiansDiabetes$diabetes[-train])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.