mcmcdiagnostics_cergm: MCMC Diagnostics for Citation Exponential Random Graph Models

Description Usage Arguments Author(s) References Examples

Description

MCMC Diagnostics as performed by mcmc.diagnostics

Usage

1

Arguments

object

A cERGM object

Author(s)

Christian Schmid <songhyo86@gmail.com>

References

Hunter D, Handcock M, Butts C, Goodreau S, Morris M (2008). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3), 1-29.

Schmid C, Chen T, Desmarais B (2020). Generative Dynamics of Supreme Court Citations: Analysis with a New Statistical Network Model.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
# load Supreme Court Citation Network from 1936-1941
data("scc_1936_1941")

# get vertex attribute "Term". Indicates the Term of each node
terms <- get.vertex.attribute(scc_1936_1941, "Term")

# create a matrix with the sender's term in each row
terms.matrix <- matrix(terms,length(terms),length(terms),byrow=F)

# fix all dyads that can potentially be created in 1941 as 1
unfixed.dyads <- 1*(terms.matrix == 1941)


# alternatively one can also add an unfixed vector that indicates
# which nodes can create edges
unfixed.vector<-  1*(terms==1941)

# test cergm-function
model <- cergm(scc_1936_1941~ edges+ difftransties("Term")+ nodeicov("NumberJusticesPro"),
            not.fixed=unfixed.dyads, estimate="MPLE", init.method="SAN")

mcmc.diagnostics.cERGM(model)

schmid86/cERGM documentation built on Sept. 10, 2021, 6:20 p.m.