deriv_2nd_ar1 | R Documentation |
Calculates the second derivative for the AR(1) process and places it into a matrix form. The matrix form in this case is for convenience of the calculation.
deriv_2nd_ar1(phi, sigma2, tau)
phi |
A |
sigma2 |
A |
tau |
A |
A matrix
with the first column containing the
second partial derivative with respect to phi and
the second column contains the second partial derivative with
respect to sigma^2
Taking the second derivative with respect to phi yields:
d^2/dphi^2 nu[j]^2(phi, sigma2) = 2*sigma2*(4*(1 + 3*phi)*(1 + phi + phi^2)* (3 - 4*phi^(tau[j]/2) + phi^tau[j]) + (-1 + phi^2)* (3*(1 + phi)^2 + 2*phi^(tau[j]/2 - 1)*(1 + phi*(4 + 7*phi)) - phi^(tau[j] - 1)*(1 + phi*(4 + 7*phi)))* tau[j] + phi^(tau[j]/2 - 1)*(-1 + phi^2)^2*(-1 + phi^(tau[j]/2))*tau[j]^2)/((-1 + phi)^5*(1 + phi)^3*tau[j]^2)
Taking the second derivative with respect to sigma^2 yields:
d^2/dsigma2^2 nu[j]^2(phi, sigma2) = 0
Taking the derivative with respect to phi and sigma2 yields:
d/dsigma * d/dphi nu[j]^2(phi, sigma2) = (2*((-(3 - 4*phi^(tau[j]/2) + phi^tau[j]))*(1 + phi*(2 + 3*phi)) + (-1 + phi^2)*(-1 - phi - 2*phi^(tau[j]/2) + phi^tau[j])*tau[j]))/((-1 + phi)^4*(1 + phi)^2*tau[j]^2)
James Joseph Balamuta (JJB)
deriv_2nd_ar1(.3, 1, 2^(1:5))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.