deriv_arma11 | R Documentation |
Obtain the first derivative of the ARMA(1,1) process.
deriv_arma11(phi, theta, sigma2, tau)
phi |
A |
theta |
A |
sigma2 |
A |
tau |
A |
A matrix
with:
The first column containing the partial derivative with respect to phi;
The second column containing the partial derivative with respect to theta;
The third column contains the partial derivative with respect to sigma^2.
Taking the derivative with respect to phi yields:
(1/((-1 + phi)^4*(1 + phi)^2*tau[j]^2))*2*sigma2*((-(3 - 4*phi^(tau[j]/2) + phi^tau[j]))*(1 + phi*(2 + 3*phi) + theta^2*(1 + phi*(2 + 3*phi)) + 2*theta*(1 + phi*(3 + phi + phi^2))) + ((-(1 + theta)^2)*(-1 + phi)*(1 + phi)^2 - 2*phi^(tau[j]/2 - 1)*(theta + phi)*(1 + theta*phi)*(-1 + phi^2) + phi^(tau[j] - 1)*(theta + phi)*(1 + theta*phi)*(-1 + phi^2))*tau[j])
Taking the derivative with respect to theta yields:
(2*sigma2*((1 + 2*theta*phi + phi^2)*(3 - 4*phi^(tau[j]/2) + phi^tau[j]) +(1 + theta)*(-1 + phi^2)*tau[j])) / ((-1 + phi)^3*(1 + phi)*tau[j]^2)
Taking the derivative with respect to sigma^2 yields:
((-2*((-(theta + phi))*(1 + theta*phi)*(3 - 4*phi^(tau[j]/2) + phi^tau[j]) - (1/2)*(1 + theta)^2*(-1 + phi^2)*tau[j]))/((-1 + phi)^3*(1 + phi)*tau[j]^2))
James Joseph Balamuta (JJB)
deriv_arma11(.3, .4, 1, 2^(1:5))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.