gen_qn | R Documentation |
Simulates a QN sequence given Q^2.
gen_qn(N, q2 = 0.1)
N |
An |
q2 |
A |
A vec
containing the QN process.
Quantization Noise (QN) with parameter Q^2 in R^{+}. With i.i.d Y_t \sim U(0,1) (i.e. a standard uniform variable), this process is defined as:
X_t = sqrt(12*Q^2)*(Y[t]-Y[t-1])
To generate the quantisation noise, we follow this recipe: First, we generate using a random uniform distribution:
U_k^*~U[0,1]
Then, we multiple the sequence by sqrt(12) so:
U_k = sqrt(12)*U_k^*
Next, we find the derivative of U_k
U_k^. = (U_(k + (delta)t) - U_k)
In this case, we modify the derivative such that: U_k^. * (delta)t = U_{k + (delta)*t} - U_k
Thus, we end up with:
x_k = sqrt(Q)*U_k^.*(delta)t
x_k = sqrt(Q)* (U_(k+1) - U_(k))
gen_qn(10, 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.