hiddenf.test: Franck et al.'s test for interaction

Description Usage Arguments Details Value Author(s) References Examples

View source: R/test.R

Description

computes Franck et al's. (2013) test statistic,ACMIF, and corresponding p-value.

Usage

1
hiddenf.test(x, nsim = 1000, dist = "sim", ...)

Arguments

x

A b-by-t data matrix, which rows corresponding to b-block effects and columns are t-treatment effects

nsim

Number of simulation for compueting exact p-value

dist

If dist="sim", we used Monte Carlo simulation for estimating exact p-value, and if dist="asy", Bonferroni-adjusted p-value computed. The defaut value is "sim"

Details

If rows numer(b) of data matrix is less than it's columns number(t) at fiest transposing data matrix. In addition requires that data matrix has more than two rows or columns

Value

A p-value for input

Author(s)

Zahra. Shenavari, ...

References

Franck, C., Nielsen, D., Osborne, J. A. (2013). A method for detecting hidden additivity in two-factor unreplicated experiments. Computational Statistics and Data Analysis 67:95-104.

Examples

1
2
3
## Not run: this is an example
data(cnv6)
hiddenf.test(cnv6,nsim=1000,dist = "sim")

sdateam/combinIT documentation built on May 6, 2019, 12:10 p.m.