View source: R/estimation_emtp2.R
emtp2 | R Documentation |
This function implements a block descent algorithm to find the maximum of the Gaussian log-likelihood under the constraint that the concentration matrix is a Laplacian matrix. See \insertCiteroe2021;textualgraphicalExtremes for details.
emtp2(Gamma, tol = 1e-06, verbose = TRUE, initial_point = TRUE)
Gamma |
conditionally negative semidefinite matrix. This will be typically the empirical variogram matrix. |
tol |
The convergence tolerance. The algorithm terminates when the sum of absolute differences between two iterations is below |
verbose |
if TRUE (default) the output will be printed. |
initial_point |
if TRUE (default), the algorithm will construct an initial point before the iteration steps. |
A list consisting of:
G_emtp2 |
The optimal value of the variogram matrix |
it |
The number of iterations |
Other parameter estimation methods:
data2mpareto()
,
emp_chi()
,
emp_chi_multdim()
,
emp_vario()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.