knitr::opts_chunk$set(echo = TRUE, collapse = TRUE, fig.width = 7, fig.height = 4, fig.align = "center", message = FALSE, warning = FALSE)
The CRAN version can be loaded as follows:
library('mapping')
or the development version from GitHub:
remotes::install_github('serafinialessio/mapping')
The objects created in this package build the hierarchy starting from the statistical units in input to the larger statistical unit aggregate (look at the other vignettes for more details about the hierarchy).
Aggregations
arguments allows to easily aggregate and mapping larger units starting from those given in input.
data("popIT") it_pr <- IT(data = popIT, unit = "provincia", year = "2019", check.unit.names = FALSE) str(it_pr,1)
In the structure we have bigger units, as regione
mappingIT(data = it_pr, var = "totale") mappingIT(data = it_pr, var = "totale", type = "interactive")
Aggregating the province in the beloging regions summing the total population of each province
mappingIT(data = it_pr, var = "totale", aggregation_unit = "regione")
mappingIT(data = it_pr, var = "totale", aggregation_unit = "regione", type = "interactive")
or for each ripartizione, removing the missing values
mappingIT(data = it_pr, var = "totale", aggregation_unit = "ripartizione", aggregation_fun = function(x) sum(x, na.rm = TRUE)) mappingIT(data = it_pr, var = "totale", aggregation_unit = "ripartizione", aggregation_fun = function(x) sum(x, na.rm = TRUE), type = "interactive")
This can be also used with facetes
mappingIT(data = it_pr, var = "totale", aggregation_unit = "regione", facets = "regione") mappingIT(data = it_pr, var = "totale", aggregation_unit = "regione", facets = "regione", type = "interactive") mappingIT(data = it_pr, var = "totale", aggregation_unit = "ripartizione", facets = "ripartizione", aggregation_fun = function(x) sum(x, na.rm = TRUE)) mappingIT(data = it_pr, var = "totale", aggregation_unit = "ripartizione", facets = "ripartizione", aggregation_fun = function(x) sum(x, na.rm = TRUE), type = "interactive")
Also in the facetes we can chose the aggregation
mappingIT(data = it_pr, var = "totale", aggregation_unit = "regione", facets = "ripartizione") mappingIT(data = it_pr, var = "totale", aggregation_unit = "regione", facets = "ripartizione", type = "interactive")
data("popEU") popEU <- popEU euNuts2 <- EU(data = popEU, colID = "GEO",unit = "nuts2",matchWith = "id") str(euNuts2,1)
mappingEU(data = euNuts2, var = "total") mappingEU(data = euNuts2, var = "total", type = "interactive")
Aggregating the nuts 0 in the belonging countries with the average population of each nuts 0
mappingEU(data = euNuts2, var = "total", aggregation_unit = "nuts0", aggregation_fun = mean) mappingEU(data = euNuts2, var = "total", aggregation_unit = "nuts0", aggregation_fun = mean, type = "interactive")
or with a summation to have the country population
mappingEU(data = euNuts2, var = "total", aggregation_unit = "nuts0", aggregation_fun = sum) mappingEU(data = euNuts2, var = "total", aggregation_unit = "nuts0", aggregation_fun = sum, type = "interactive")
We have many countries and the facetes can be visualise well. At this point we can subset, France for example, and show the nuts 1 units.
mappingEU(data = euNuts2, var = "total", subset = ~I(iso3 == "FRA"), aggregation_unit = "nuts1", aggregation_fun = sum, facets = "nuts1")
mappingEU(data = euNuts2, var = "total", subset = ~I(iso3 == "FRA"), aggregation_unit = "nuts1", aggregation_fun = sum, facets = "nuts1", type = "interactive")
data("popUS") us <- US(data = popUS, unit = "state") str(us,1)
mappingUS(data = us, var = "population") mappingUS(data = us, var = "population", type = "interactive")
mappingUS(data = us, var = "population", aggregation_unit = "region") mappingUS(data = us, var = "population", aggregation_unit = "region", type = "interactive")
mappingUS(data = us, var = "population", aggregation_unit = "region", facets = "region") mappingUS(data = us, var = "population", aggregation_unit = "region", facets = "region", type = "interactive")
data("popWR") popWR <- popWR wr <- WR(data = popWR, colID = "country_code", matchWith = "iso3_eh", check.unit.names = FALSE, res = "low") str(wr,1)
mappingWR(data = wr, var = "total") mappingWR(data = wr, var = "total", type = "interactive")
Aggregating by continent
mappingWR(data = wr, var = "total", aggregation_unit = "continent", aggregation_fun = function(x) sum(x, na.rm = TRUE)) mappingWR(data = wr, var = "total", aggregation_unit = "continent", aggregation_fun = function(x) sum(x, na.rm = TRUE), type = "interactive")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.