View source: R/tune_event_detection.R
| tune_cpdbee_2D | R Documentation | 
This function finds best parameters for 2D event detection using labeled data.
tune_cpdbee_2D( x, cl, alpha_min = 0.95, alpha_max = 0.98, alpha_step = 0.01, epsilon_min = 2, epsilon_max = 12, epsilon_step = 2, minPts_min = 4, minPts_max = 12, minPts_step = 2 )
| x | The data in an mxn matrix or dataframe. | 
| cl | The actual locations of the events. | 
| alpha_min | The minimum threshold value. | 
| alpha_max | The maximum threshold value. | 
| alpha_step | The incremental step size for alpha. | 
| epsilon_min | The minimum epsilon value for DBSCAN clustering. | 
| epsilon_max | The maximum epsilon value for DBSCAN clustering. | 
| epsilon_step | The incremental step size for epsilon for DBSCAN clustering. | 
| minPts_min | The minimum minPts value for for DBSCAN clustering. | 
| minPts_max | The maximum minPts value for for DBSCAN clustering. | 
| minPts_step | The incremental step size for minPts for DBSCAN clustering. | 
A list with following components
|  | The best threshold, epsilon and MinPts for 2D event detection and the associated Jaccard Index. | 
|  | All parameter values used and the associated Jaccard Index values. | 
## Not run: 
out <- gen_stream(1, sd=15)
zz <- as.matrix(out$data)
clst <- get_clusters(zz, filename = NULL, thres = 0.95, 
                    vis = TRUE, epsilon = 5, miniPts = 10, 
                    rolling = FALSE)
clst_loc <- clst$data[ ,1:2]
out <- tune_cpdbee_2D(zz, clst_loc)
out$best
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.