plot_forest | R Documentation |
Forest the results from regression
plot_forest(
reg,
reg_res,
log = TRUE,
var_label = list(group = "Dementia", age = "Age at baseline (years)", gender =
"Gender", smi = "Severe mental illness (= yes)", `gender:smi` = "Gender(= male)xSMI",
mari_stat = "Marital status", imd_cat = "Social-economic status", ethnic =
"Ethnicity", mmse = "Dementia severity", charlson = "Physical comordity"),
value_label = list(mari_stat = c("Single/divorced/widowed", "Cohabiting/married"),
detention = c(TRUE, FALSE), `gender:smi` = c(TRUE, FALSE), imd_cat =
c("1(Most deprived)", "2", "3", "4", "5(Most affluent)"), smi = c(TRUE, FALSE)),
comb_title = "Hazard Ratio (95%CI)",
layout_matrix = matrix(c(1, 1, 2, 2, 3, 3, 3, 4), nrow = 1),
shadow = c("white", "white"),
plot_out = FALSE,
num_space = 1,
...
)
reg |
the regression result, like the result of lm or glm |
reg_res |
result form reg_comb |
log |
if log x axis for plot 3 |
var_label |
list. full name of the variables |
value_label |
list. labels of values of variables. Primary use for logical. Could also use for character and factor |
comb_title |
title of plot 2 or combined result. |
layout_matrix |
matrix of the final combined plot |
shadow |
shadow of lines. still under test. |
plot_out |
output plot or list of plot_1, plot_2, plot_3, plot_4 |
Shanquan CHEN shanquan0301@gmial.com
#cox regression-----------
reg <- coxph(Surv(follow_up, detention) ~ group + cluster(rid) +
age + gender + mari_stat + ethnic + imd_cat + mmse + charlson + smi,
data = dat_mha %>% filter(group != "PDD"))
reg_res <- reg_comb(reg = reg,
exp_transfer = TRUE,
coef = "coef",
round_ci = 2,
round_p = 4,
comb_ci = "coef(ci_low-ci_high)")
plot_forest(reg = reg,
reg_res = reg_res,
var_label = list(group = "Dementia",
age = "Age at baseline (years)",
gender = "Gender",
mari_stat = "Marital status",
ethnic = "Ethnicity",
imd_cat = "Social-economic status",
mmse = "Dementia severity",
charlson = "Physical comordity",
smi = "Severe mental illness (= yes)"),
value_label = list(mari_stat = c("Single/divorced/widowed", "Cohabiting/married"),
imd_cat = c("1(Most deprived)", "2", "3", "4", "5(Most affluent)"),
smi = c(TRUE, FALSE)))
#cox regression with interaction-----------------------
reg <- coxph(Surv(follow_up, death) ~ detention*group + cluster(id) +
age + gender + mari_stat + ethnic + imd_cat + mmse + charlson + smi,
data = dat_reg)
reg_res <- reg_comb(reg = reg,
exp_transfer = TRUE,
coef = "coef",
round_ci = 2,
round_p = 4,
comb_ci = "coef(ci_low-ci_high)")
plot_forest(reg = reg,
reg_res = reg_res,
var_label = list(detention = "Compulsory admission (= yes)",
group = "Dementia",
`detention:group` = "Compulsory admission (= yes)xDLB",
age = "Age at baseline (years)",
gender = "Gender",
mari_stat = "Marital status",
ethnic = "Ethnicity",
imd_cat = "Social-economic status",
mmse = "Dementia severity",
charlson = "Physical comordity",
smi = "Severe mental illness (= yes)"),
value_label = list(mari_stat = c("Single/divorced/widowed", "Cohabiting/married"),
detention = c(TRUE, FALSE),
`detention:group` = c(TRUE, FALSE),
imd_cat = c("1(Most deprived)", "2", "3", "4", "5(Most affluent)"),
smi = c(TRUE, FALSE)))
reg <- glm(detention ~ group +
age + gender*smi + mari_stat + ethnic + imd_cat + mmse + charlson + smi,
family = binomial(),
data = dat_mha)
reg_res <- reg_comb(reg = reg,
exp_transfer = TRUE,
coef = "Estimate",
round_ci = 2,
round_p = 4,
comb_ci = "coef(ci_low-ci_high)")
plot_forest(reg = reg,
reg_res = reg_res,
var_label = list(group = "Dementia",
age = "Age at baseline (years)",
gender = "Gender",
`gender:smi` = "GenderxSMI",
mari_stat = "Marital status",
ethnic = "Ethnicity",
imd_cat = "Social-economic status",
mmse = "Dementia severity",
charlson = "Physical comordity",
smi = "Severe mental illness (= yes)"),
value_label = list(mari_stat = c("Single/divorced/widowed", "Cohabiting/married"),
`gender:smi` = c(TRUE, FALSE),
imd_cat = c("1(Most deprived)", "2", "3", "4", "5(Most affluent)"),
smi = c(TRUE, FALSE)),
shadow = pal_nejm("default", alpha = 0.6)(8)[1:2])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.