# Packages ----------------------------------------------------------------
library(tidyverse)
library(brms)
# Functions ---------------------------------------------------------------
devtools::load_all()
# Setup -------------------------------------------------------------------
seed <- 2022
chains <- 15
iter <- 4000
cores <- chains
samp_prior <- "yes"
# Loading Models ----------------------------------------------------------
fit_ri_int <- readRDS(file.path("models", "intensity", "fit_ri_int.rds"))
fit_ri_no3int <- readRDS(file.path("models", "intensity", "fit_ri_no3int.rds"))
fit_ri_tas_mask <- readRDS(file.path("models", "intensity", "fit_ri_tas_mask.rds"))
fit_ri_aq_mask <- readRDS(file.path("models", "intensity", "fit_ri_aq_mask.rds"))
fit_ri_tas_mask_subtle <- readRDS(file.path("models", "intensity", "fit_ri_tas_mask_subtle.rds"))
fit_ri_aq_mask_subtle <- readRDS(file.path("models", "intensity", "fit_ri_aq_mask_subtle.rds"))
# Legend ------------------------------------------------------------------
# flat = completely flat priors (brms default)
# Data --------------------------------------------------------------------
dat_fit <- readRDS(file = file.path("data", "cleaned", "dat_fit.rds"))
# Model 1 - mask * intensity * emotion ------------------------------------
fit_ri_int_flat <- brm(fit_ri_int$formula,
data = dat_fit,
family = gaussian(),
chains = chains,
cores = cores,
iter = iter,
file = "models/intensity/fit_ri_int_flat",
save_pars = save_pars(all = TRUE),
backend = "cmdstanr",
sample_prior = samp_prior,
seed = seed)
success_step(fit_ri_int_flat)
# Model 2a - mask * tas ---------------------------------------------------
fit_ri_tas_mask_flat <- brm(fit_ri_tas_mask$formula,
data = dat_fit,
family = gaussian(),
chains = chains,
cores = cores,
iter = iter,
file = "models/intensity/fit_ri_tas_mask_flat",
save_pars = save_pars(all = TRUE),
sample_prior = samp_prior,
seed = seed)
success_step(fit_ri_tas_mask_flat)
# Model 2b - mask * tas (subtle) ---------------------------------------
fit_ri_tas_mask_subtle_flat <- brm(fit_ri_tas_mask_subtle$formula,
data = fit_ri_tas_mask_subtle$data,
family = gaussian(),
chains = chains,
cores = cores,
iter = iter,
file = "models/intensity/fit_ri_tas_mask_subtle_flat",
save_pars = save_pars(all = TRUE),
sample_prior = samp_prior,
seed = seed)
success_step(fit_ri_tas_mask_subtle_flat)
# Model 3a - mask * aq ----------------------------------------------------
fit_ri_aq_mask_flat <- brm(fit_ri_aq_mask$formula,
data = dat_fit,
family = gaussian(),
chains = chains,
cores = cores,
iter = iter,
file = "models/intensity/fit_ri_aq_mask_flat",
save_pars = save_pars(all = TRUE),
sample_prior = samp_prior,
seed = seed)
success_step(fit_ri_aq_mask_flat)
# Model 3b - mask * intensity * aq ----------------------------------------
fit_ri_aq_mask_subtle_flat <- brm(fit_ri_aq_mask_subtle$formula,
data = fit_ri_aq_mask_subtle$data,
family = gaussian(),
chains = chains,
cores = cores,
iter = iter,
file = "models/intensity/fit_ri_aq_mask_subtle_flat",
save_pars = save_pars(all = TRUE),
sample_prior = samp_prior,
seed = seed)
success_step(fit_ri_aq_mask_subtle_flat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.