R/uni.slice.R

#' Univariate slice sampling (Radford M. Neal (2008))
#'
#' Performs a slice sampling update from an initial point to a new point that leaves invariant the distribution with the specified log density function.
#'
#' @param x0 Initial point
#' @param g Function returning the log of the probability density (plus constant)
#' @param w Size of the steps for creating interval, defaults to 1
#' @param m Limit on steps, defaults to \eqn{\infty}
#' @param lower Lower bound on support of the distribution, defaults to \eqn{-\infty}
#' @param upper Upper bound on support of the distribution, defaults to \eqn{+\infty}
#' @param gx0 Value of \eqn{g(x0)}, if known, defaults to \code{not known}
#' @keywords uni.slice()
#' @export
#'
#' @import grDevices graphics stats
#' @examples uni.slice()

####################################################
### Code by Neal M. Radford. See details below  ###
####################################################


# R FUNCTIONS FOR PERFORMING UNIVARIATE SLICE SAMPLING.
#
# Radford M. Neal, 17 March 2008.
#
# Implements, with slight modifications and extensions, the algorithm described
# in Figures 3 and 5 of the following paper:
#
# Neal, R. M (2003) "Slice sampling" (with discussion), Annals of Statistics,
# vol. 31, no. 3, pp. 705-767.
#
# See the documentation for the function uni.slice below for how to use it.
# The function uni.slice.test was used to test the uni.slice function.


# GLOBAL VARIABLES FOR RECORDING PERFORMANCE.

#uni.slice.calls <- 0	# Number of calls of the slice sampling function
#uni.slice.evals <- 0	# Number of density evaluations done in these calls


# UNIVARIATE SLICE SAMPLING WITH STEPPING OUT AND SHRINKAGE.
#
# Performs a slice sampling update from an initial point to a new point that
# leaves invariant the distribution with the specified log density function.
#
# Arguments:
#
# x0 Initial point
# g Function returning the log of the probability density (plus constant)
# w Size of the steps for creating interval (default 1)
# m Limit on steps (default infinite)
# lower Lower bound on support of the distribution (default -Inf)
# upper Upper bound on support of the distribution (default +Inf)
# gx0 Value of g(x0), if known (default is not known)
#
# The log density function may return -Inf for points outside the support
# of the distribution. If a lower and/or upper bound is specified for the
# support, the log density function will not be called outside such limits.
#
# The value of this function is the new point sampled, with an attribute
# of "log.density" giving the value of the log density function, g, at this
# point. Depending on the context, this log density might be passed as the
# gx0 argument of a future call of uni.slice.
#
# The global variable uni.slice.calls is incremented by one for each call
# of uni.slice. The global variable uni.slice.evals is incremented by the
# number of calls made to the g function passed.
#
# WARNING: If you provide a value for g(x0), it must of course be correct!
# In addition to giving wrong answers, wrong values for gx0 may result in
# the uni.slice function going into an infinite loop.

uni.slice <- function (x0, g, w=1, m=Inf, lower=-Inf, upper=+Inf, gx0=NULL, uni.slice.calls=0, uni.slice.evals=0)
{
  # Check the validity of the arguments.

  if (!is.numeric(x0) || length(x0)!=1
      || !is.function(g)
      || !is.numeric(w) || length(w)!=1 || w<=0
      || !is.numeric(m) || !is.infinite(m) && (m<=0 || m>1e9 || floor(m)!=m)
      || !is.numeric(lower) || length(lower)!=1 || x0<lower
      || !is.numeric(upper) || length(upper)!=1 || x0>upper
      || upper<=lower
      || !is.null(gx0) && (!is.numeric(gx0) || length(gx0)!=1))
  {
    stop ("Invalid slice sampling argument")
  }

  # Keep track of the number of calls made to this function.

  uni.slice.calls <<- uni.slice.calls + 1

  # Find the log density at the initial point, if not already known.

  if (is.null(gx0))
  { uni.slice.evals <<- uni.slice.evals + 1
  gx0 <- g(x0)
  }

  # Determine the slice level, in log terms.

  logy <- gx0 - rexp(1)

  # Find the initial interval to sample from.

  u <- runif(1,0,w)
  L <- x0 - u
  R <- x0 + (w-u) # should guarantee that x0 is in [L,R], even with roundoff

  # Expand the interval until its ends are outside the slice, or until
  # the limit on steps is reached.

  if (is.infinite(m)) # no limit on number of steps
  {
    repeat
    { if (L<=lower) break
      uni.slice.evals <<- uni.slice.evals + 1
      if (g(L)<=logy) break
      L <- L - w
    }

    repeat
    { if (R>=upper) break
      uni.slice.evals <<- uni.slice.evals + 1
      if (g(R)<=logy) break
      R <- R + w
    }
  }

  else if (m>1) # limit on steps, bigger than one
  {
    J <- floor(runif(1,0,m))
    K <- (m-1) - J

    while (J>0)
    { if (L<=lower) break
      uni.slice.evals <<- uni.slice.evals + 1
      if (g(L)<=logy) break
      L <- L - w
      J <- J - 1
    }

    while (K>0)
    { if (R>=upper) break
      uni.slice.evals <<- uni.slice.evals + 1
      if (g(R)<=logy) break
      R <- R + w
      K <- K - 1
    }
  }

  # Shrink interval to lower and upper bounds.

  if (L<lower)
  { L <- lower
  }
  if (R>upper)
  { R <- upper
  }

  # Sample from the interval, shrinking it on each rejection.

  repeat
  {
    x1 <- runif(1,L,R)

    uni.slice.evals <<- uni.slice.evals + 1
    gx1 <- g(x1)

    if (gx1>=logy) break

    if (x1>x0)
    { R <- x1
    }
    else
    { L <- x1
    }
  }

  # Return the point sampled, with its log density attached as an attribute.

  attr(x1,"log.density") <- gx1
  return (x1)

}
shariq-mohammed/stSpikeSlabEEG documentation built on Aug. 2, 2020, 11:44 a.m.