The World Register of Marine Species (WoRMS) is a comprehensive database providing authoritative lists of marine organism names, managed by taxonomic experts. It combines data from the Aphia database and other sources like AlgaeBase and FishBase, offering species names, higher classifications, and additional data. WoRMS is continuously updated and maintained by taxonomists. In this tutorial, we source the R package worrms
to access WoRMS data for our function. Please note that the authors of SHARK4R
are not affiliated with WoRMS.
You can install the package from GitHub using the devtools
package:
# install.packages("devtools") devtools::install_github("sharksmhi/SHARK4R", dependencies = TRUE)
Load the SHARK4R
and dplyr
libraries:
library(SHARK4R) library(dplyr) library(ggplot2)
suppressPackageStartupMessages({ library(SHARK4R) library(dplyr) library(ggplot2) })
Phytoplankton data, including scientific names and AphiaIDs, are downloaded from SHARK. To see more download options, please visit the Retrieve Data From SHARK tutorial.
# Retrieve all phytoplankton data from April 2015 shark_data <- get_shark_data(fromYear = 2015, toYear = 2015, months = 4, dataTypes = c("Phytoplankton"), verbose = FALSE)
Taxon names can be matched with the WoRMS API to retrieve Aphia IDs and corresponding taxonomic information. The get_worms_records_name
function incorporates retry logic to handle temporary failures, ensuring that all names are processed successfully.
# Find taxa without Aphia ID no_aphia_id <- shark_data %>% filter(is.na(aphia_id)) # Randomly select taxa with missing aphia_id taxa_names <- sample(unique(no_aphia_id$scientific_name), size = 10, replace = TRUE) # Match taxa names with WoRMS worms_records <- get_worms_records_name(unique(taxa_names), fuzzy = TRUE, best_match_only = TRUE, marine_only = TRUE, verbose = FALSE) # Print result as tibble tibble(worms_records)
Taxonomic records can also be retrieved using Aphia IDs, employing the same retry and error-handling logic as the get_worms_records_name
function.
# Randomly select ten Aphia IDs aphia_ids <- sample(unique(shark_data$aphia_id), size = 10) # Remove NAs aphia_ids <- aphia_ids[!is.na(aphia_ids)] # Retrieve records worms_records <- get_worms_records(aphia_ids, verbose = FALSE) # Print result as tibble tibble(worms_records)
SHARK sources taxonomic information from Dyntaxa, which is reflected in columns starting with taxon_xxxxx
. Equivalent columns based on WoRMS can be retrieved using the add_worms_taxonomy
function.
# Retrieve taxonomic table worms_taxonomy <- add_worms_taxonomy(aphia_ids, verbose = FALSE) # Print result as tibble tibble(worms_taxonomy) # Enrich data with data from WoRMS shark_data_with_worms <- shark_data %>% left_join(worms_taxonomy, by = c("aphia_id", "scientific_name"))
Phytoplankton data are often categorized into major groups such as Dinoflagellates, Diatoms, Cyanobacteria, and Others. This grouping can be achieved by referencing information from WoRMS and assigning taxa to these groups based on their taxonomic classification, as demonstrated in the example below.
# Subset a few national monitoring stations nat_stations <- shark_data %>% filter(station_name %in% c("BY31 LANDSORTSDJ")) # Randomly select one sample from the nat_stations sample <- sample(unique(nat_stations$shark_sample_id_md5), 1) # Subset the random sample shark_data_subset <- shark_data %>% filter(shark_sample_id_md5 == sample) # Assign groups by providing both scientific name and Aphia ID plankton_groups <- assign_phytoplankton_group( scientific_names = shark_data_subset$scientific_name, aphia_ids = shark_data_subset$aphia_id, verbose = FALSE) # Print result tibble(distinct(plankton_groups)) # Add plankton groups to data and summarize abundance results plankton_group_sum <- shark_data_subset %>% mutate(plankton_group = plankton_groups$plankton_group) %>% filter(parameter == "Abundance") %>% group_by(plankton_group) %>% summarise(sum_plankton_groups = sum(value, na.rm = TRUE)) # Plot a pie chart ggplot(plankton_group_sum, aes(x = "", y = sum_plankton_groups, fill = plankton_group)) + geom_col(width = 1) + coord_polar(theta = "y") + labs( title = "Phytoplankton Groups", subtitle = paste(unique(shark_data_subset$station_name), unique(shark_data_subset$sample_date)), fill = "Plankton Group" ) + theme_void() + theme(plot.background = element_rect(fill = "white", color = NA))
You can add custom plankton groups by using the custom_groups
parameter, allowing flexibility to categorize plankton based on specific taxonomic criteria. Please note that the order of the list matters: taxa are assigned to the last matching group. For example: Mesodinium rubrum will be excluded from the Ciliates group because it appears after Ciliates in the list in the example below.
# Define custom plankton groups using a named list custom_groups <- list( "Cryptophytes" = list(class = "Cryptophyceae"), "Green Algae" = list(class = c("Trebouxiophyceae", "Chlorophyceae", "Pyramimonadophyceae"), phylum = "Chlorophyta"), "Ciliates" = list(phylum = "Ciliophora"), "Mesodinium rubrum" = list(scientific_name = "Mesodinium rubrum"), "Dinophysis" = list(genus = "Dinophysis") ) # Assign groups by providing scientific name only, and adding custom groups plankton_groups <- assign_phytoplankton_group( scientific_names = shark_data_subset$scientific_name, custom_groups = custom_groups, verbose = FALSE) # Add new plankton groups to data and summarize abundance results plankton_custom_group_sum <- shark_data_subset %>% mutate(plankton_group = plankton_groups$plankton_group) %>% filter(parameter == "Abundance") %>% group_by(plankton_group) %>% summarise(sum_plankton_groups = sum(value, na.rm = TRUE)) # Plot a new pie chart, including the custom groups ggplot(plankton_custom_group_sum, aes(x = "", y = sum_plankton_groups, fill = plankton_group)) + geom_col(width = 1) + coord_polar(theta = "y") + labs( title = "Phytoplankton Custom Groups", subtitle = paste(unique(shark_data_subset$station_name), unique(shark_data_subset$sample_date)), fill = "Plankton Group" ) + theme_void() + theme(plot.background = element_rect(fill = "white", color = NA))
# Print citation citation("SHARK4R")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.