knitr::opts_chunk$set(echo = TRUE, collapse = TRUE, message = FALSE, out.width = "70%", out.height = "70%")
Oh S, Geistlinger L, Ramos M, Blankenberg D, van den Beek M, Taroni JN, Carey VJ, Waldron L, Davis S. GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases. Nature Communications 2022;13: 3695. doi: 10.1038/s41467-022-31411-3
BiocManager::install("shbrief/GenomicSuperSignature") suppressPackageStartupMessages({ library(GenomicSuperSignature) library(bcellViper) library(dplyr) library(AnVIL) })
## getModel system.time(RAVmodel <- getModel("PLIERpriors")) system.time(RAVmodel_C2 <- getModel("C2"))
## Check the model RAVmodel geneSets(RAVmodel) ## Input data data(bcellViper) dset
## validate system.time(val_all <- validate(dset, RAVmodel)) heatmapTable(val_all, RAVmodel) val_ind <- validatedSignatures(val_all, RAVmodel, indexOnly = TRUE)
## MeSH terms # for (i in val_ind) {drawWordcloud(RAVmodel, ind = i)} drawWordcloud(RAVmodel, val_ind[5])
## GSEA subsetEnrichedPathways(RAVmodel, val_ind[5]) %>% as.data.frame ## Relevant studies findStudiesInCluster(RAVmodel, val_ind[5], studyTitle = TRUE) ## Misc metadata getRAVInfo(RAVmodel, val_ind[5]) getStudyInfo(RAVmodel, "SRP095405")
## The data file stored in Google Cloud Bucket using AnVIL package dir <- "gs://genomic_super_signature" fpath <- file.path(dir, "TCGA_validationDatasets.rda") ## Load the data load(gsutil_pipe(fpath)) ## Panel B brca <- TCGA_validationDatasets[["BRCA"]] system.time(val_brca <- validate(brca, RAVmodel_C2)) heatmapTable(val_brca, RAVmodel_C2) ## Panel C drawWordcloud(RAVmodel, 221) ## Panel D findStudiesInCluster(RAVmodel, 221, studyTitle = TRUE) ## Panel E subsetEnrichedPathways(RAVmodel, 221, include_nes = TRUE) %>% as.data.frame # annotateRAV(RAVmodel, 221, n = 10)
E-MTAB-2452 dataset
## The data file stored in Google Cloud Bucket using AnVIL package dir <- "gs://genomic_super_signature" fpath <- file.path(dir, "E-MTAB-2452_hugene11st_SCANfast_with_GeneSymbol.pcl") x <- gsutil_pipe(fpath, open = "rb") ## Load the data annot.dat <- readr::read_tsv(x, show_col_types = FALSE) %>% as.data.frame rownames(annot.dat) <- annot.dat[, 2] dataset <- as.matrix(annot.dat[, 3:ncol(annot.dat)]) rownames(dataset) <- annot.dat$GeneSymbol dataset[1:3, 1:3]
system.time(val_all <- validate(dataset, RAVmodel)) annotatePC(2, val_all, RAVmodel, simplify = FALSE) annotatePC(1:3, val_all, RAVmodel, scoreCutoff = 0)
Label each sample with their known cell type.
cellType <- gsub("_.*$", "", colnames(dataset)) cellType <- gsub("CD4", "CD4,T cell", cellType) cellType <- gsub("CD14", "CD14,monocyte", cellType) cellType <- gsub("CD16", "CD16,neutrophil", cellType) names(cellType) <- colnames(dataset)
plotAnnotatedPCA(dataset, RAVmodel, c(2,3), val_all, scoreCutoff = 0.3, color_by = cellType, color_lab = "Cell Type")
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.