View source: R/ranger_reg_plot.R
plot_rel_predicted | R Documentation |
Calculate the relative predicted values to the spline fit in the training data.
plot_rel_predicted(
relTrain_data,
prefix = "train",
target_field = "value",
outdir = NULL
)
relTrain_data |
The output dataframe of |
prefix |
The prefix of a train dataset. |
target_field |
A string indicating the target field in the metadata for regression. |
outdir |
The output directory. |
Shi Huang
set.seed(123)
train_x <- data.frame(rbind(t(rmultinom(7, 75, c(.201,.5,.02,.18,.099))),
t(rmultinom(8, 75, c(.201,.4,.12,.18,.099))),
t(rmultinom(15, 75, c(.011,.3,.22,.18,.289))),
t(rmultinom(15, 75, c(.091,.2,.32,.18,.209))),
t(rmultinom(15, 75, c(.001,.1,.42,.18,.299)))))
train_y<- 1:60
test_x <- data.frame(rbind(t(rmultinom(7, 75, c(.201,.5,.02,.18,.099))),
t(rmultinom(8, 75, c(.201,.4,.12,.18,.099))),
t(rmultinom(15, 75, c(.011,.3,.22,.18,.289))),
t(rmultinom(15, 75, c(.091,.2,.32,.18,.209)))))
test_y<- 1:45
train_rf_model<-rf.out.of.bag(train_x, train_y)
predicted_test_y<-predict(train_rf_model$rf.model, test_x)$predictions
relTrain_data<-calc_rel_predicted(train_y, train_rf_model$predicted, test_y, predicted_test_y)
plot_rel_predicted(relTrain_data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.