kelly_monte_carlo: Monte-Carlo optimization of expected log

Description Usage Arguments Details Value

View source: R/monte_carlo.R

Description

A Monte-Carlo implementation of the Kelly criterion for a continuous return RV.

Usage

1
kelly_monte_carlo(distr, rate, lb, ub, n = 50000, ...)

Arguments

distr

string for distribution name of "r, p, d" family for simulating, CDFs, and PDFs

rate

the discounting rate

lb

the lower bound for interval given to the uniroot bisection solver

ub

the upper bound for interval given to the uniroot bisection solver

n

the number of samples to use in the Monte-Carlo approximation

...

parameters of distribution, specifically the rdistr(n, params...) form

Details

Using Leibniz's rule one can differentiate under the expectation and then set this expectation to zero. Using LLN we approximate this numerically

Value

list


shill1729/KellyCriterion documentation built on Oct. 12, 2020, 4:21 a.m.