knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

The DMCFB package is a pipeline to identify differentially methylated cytosine (DMC) in bisulfite sequencing data using Bayesian functional regression models. In what follows we provides some guidelines on how to read your data and analyze them.

Reading data

Reading bisulfite data (using files)

The R-method readBismark() is used to read bisulfite data files that are created by Bismark. Each file must include six columns, with no header, that represent

and each row is a cytosine (or a small region) in DNA.

The function readBismark(<files' paths>, <files' names>) has two inputs: 'the paths of the files' and 'the names of the files'. Using this function an object of class BSDMC is created. Extra information about data such as Age, Gender, Group, etc, must be assigned to the object using DataFrame function. As an example, we have provided three files in the package that can be read as follows:

library(DMCFB)
fn <- list.files(system.file("extdata",package = "DMCFB"))
fn.f <- list.files(system.file("extdata",package="DMCFB"), full.names=TRUE)
OBJ <- readBismark(fn.f, fn, mc.cores = 2)
cdOBJ <- DataFrame(Cell = factor(c("BC", "TC","Mono"),
levels = c("BC", "TC", "Mono")), row.names = c("BCU1568","BCU173","BCU551"))
colData(OBJ) <- cdOBJ
OBJ

Reading bisulfite data (using matrices)

Alternatively, one can use two integer matrices and a DataFrame to create BSDMC object using cBSDMC() function. One matrix includes the read-depth and the other one includes methylation reads. The columns of these matrices represent samples and the rows represent cytosine positions.

Additional information about the genomic positions and covariates must be stored in a DataFrame and then assign to the object.

The following exampel shows the details.

library(DMCFB)
set.seed(1980)
nr <- 1000
nc <- 8
metht <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n=nr*nc,c(metht),prob = runif(nr*nc)),nr,nc)
methl <- methc/metht
r1 <- GRanges(rep('chr1', nr), IRanges(1:nr, width=1), strand='*')
names(r1) <- 1:nr
cd1 <- DataFrame(Group=rep(c('G1','G2'),each=nc/2),row.names=LETTERS[1:nc])
OBJ2 <- cBSDMC(rowRanges=r1,methReads=methc,totalReads=metht,
  methLevels=methl,colData=cd1)
OBJ2

Identifying DMCs

To identify DMCs, one need to use the function findDMCFB() function. The function

library(DMCFB)
start.time <- Sys.time()
path0 <- "..//BCData/" # provide the path to the files
namelist.new <- list.files(path0,pattern="blk",full.names=F)
namelist.new.f <- list.files(path0,pattern="blk",full.names=T)
type <- NULL
for(i in seq_along(namelist.new)){
    type[i] <- unlist(strsplit(namelist.new[i], split=c('_'), fixed=TRUE))[2]
}
type
table(type)
indTC <- which(type=="TC")
indBC <- which(type=="BC")
indMono <- which(type=="Mono")
namelist.new <- namelist.new[c(indBC,indMono,indTC)]
namelist.new.f <- namelist.new.f[c(indBC,indMono,indTC)]
BLKDat <- readBismark(namelist.new.f, namelist.new, mc.cores = 2)
colData1 <- DataFrame(Group = factor(
  c(rep("BC",length(indBC)), rep("Mono",length(indMono)), 
  rep("TC", length(indTC))), levels = c("BC", "Mono", "TC")), 
  row.names = colnames(BLKData))
colData(BLKDat) <- colData1
BLK.BC.Mono.TC <- sort(BLKDat)
DMC.obj = findDMCFB(object = BLKDat, bwa = 30, bwb = 30, nBurn = 300, nMC = 300,
  nThin = 1, alpha = 5e-5, pSize = 500, sfiles = FALSE)

Figures

To plot DMCs one can use the plotDMCFB() function to plot an BSDMC object that resulted from running findDMCFB() function. To illustrate use the following example:

library(DMCFB)
set.seed(1980)
nr <- 1000
nc <- 8
metht <- matrix(as.integer(runif(nr * nc, 0, 100)), nr)
methc <- matrix(rbinom(n=nr*nc,c(metht),prob = runif(nr*nc)),nr,nc)
methl <- methc/metht
r1 <- GRanges(rep('chr1', nr), IRanges(1:nr, width=1), strand='*')
names(r1) <- 1:nr
cd1 <- DataFrame(Group=rep(c('G1','G2'),each=nc/2),row.names=LETTERS[1:nc])
OBJ1 <- cBSDMC(rowRanges=r1,methReads=methc,totalReads=metht,
  methLevels=methl,colData=cd1)
OBJ2 = findDMCFB(object = OBJ1, bwa = 30, bwb = 30, nBurn = 10, nMC = 10,
  nThin = 1, alpha = 0.05, pSize = 500, sfiles = FALSE)
plotDMCFB(OBJ2, region = c(1,400), nSplit = 2)

Session info

sessionInfo()


shokoohi/DMCFB documentation built on April 21, 2022, 5:53 a.m.