Description Usage Arguments Value Examples
Generate cleaned hyperparameter effect data from a tuning result or from a
nested cross-validation tuning result. The object returned can be used for
custom visualization or passed downstream to an out of the box mlr method,
plotHyperParsEffect.
| 1 2 | generateHyperParsEffectData(tune.result, include.diagnostics = FALSE,
  trafo = FALSE, partial.dep = FALSE)
 | 
| tune.result | [ | 
| include.diagnostics | [ | 
| trafo | [ | 
| partial.dep | [ | 
[HyperParsEffectData]
Object containing the hyperparameter effects dataframe, the tuning
performance measures used, the hyperparameters used, a flag for including
diagnostic info, a flag for whether nested cv was used, a flag for whether
partial dependence should be generated, and the optimization algorithm used.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run: 
# 3-fold cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
res = tuneParams("classif.ksvm", task = pid.task, resampling = rdesc,
par.set = ps, control = ctrl)
data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "C", y = "mmce.test.mean")
plt + ylab("Misclassification Error")
# nested cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
lrn = makeTuneWrapper("classif.ksvm", control = ctrl,
                      resampling = rdesc, par.set = ps)
res = resample(lrn, task = pid.task, resampling = cv2,
               extract = getTuneResult)
data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "C", y = "mmce.test.mean", plot.type = "line")
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.