```r knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
# psace The goal of *psace* is to implement various estimators of Average Causal Effects within principal strata (PS-ACEs) from randomized experiments and observational studies. ## Installation with `devtools`: ```r devtools::install_github("shuyang1987/psace")
The reference paper will come soon.
psace(X,Z,S,Y,family.Y,nboot)
Argument | ------------- | ------------- X| is a matrix of pre-treatment covariates without intercept (n x p). Z| is a vector of treatment (n x 1). S| is a vector of binary intermediate outcome (n x 1). Y| is a vector of outcome ( n x 1). family.Y| specifies the family for the outcome model. |"gaussian": a linear regression model for the continuous outcome. |"binomial": a logistic regression model for the binary outcome. nboot| is the number of bootstrap samples.
| ------------- | ------------- Complier| tau10w| a principal score weighting estimator of tau10 tau10sw| a stabilized weighting estimator of tau10 tau10reg| a regression estimator of tau10 using outcome mean regression and inverse probability of treatment weighting tau10reg2| a regression estimator of tau10 using outcome mean and principal score regression tau10aw| a triply robust estimator of tau10 bootstrap variance estimator|ve.tau10w,ve.tau10sw,ve.tau10reg,ve.tau10reg2,ve.tau10aw
| ------------- | ------------- Never Taker| tau00w| a principal score weighting estimator of tau00 tau00sw| a stabilized weighting estimator of tau00 tau00reg| a regression estimator of tau00 using outcome mean regression and inverse probability of treatment weighting tau00reg2| a regression estimator of tau00 using outcome mean and principal score regression tau00aw| a triply robust estimator of tau00 bootstrap variance estimator|ve.tau00w,ve.tau00sw,ve.tau00reg,ve.tau00reg2,ve.tau00aw
| ------------- | ------------- Always Taker| tau11w| a principal score weighting estimator of tau11 tau11sw| a stabilized weighting estimator of tau11 tau11reg| a regression estimator of tau11 using outcome mean regression and inverse probability of treatment weighting tau11reg2| a regression estimator of tau11 using outcome mean and principal score regression tau11aw| a triply robust estimator of tau11 bootstrap variance estimator|ve.tau11w,ve.tau11sw,ve.tau11reg,ve.tau11reg2,ve.tau11aw
This is an example for illustration.
library(stats) set.seed(1) #X consists of 5 covariates n <- 1000 X <- rnorm(n,0.25,1) for(k in 2:4){ X <- cbind(X,rnorm(n,0.25,1)) } X <- cbind(X,rbinom(n,1,0.5)) # treatment assignment Xtilde1 <- (X-0.25)/1 theta <- 0 eta <- c(0,1,1,1,1,theta)/2.5 px0 <- exp(cbind(1,Xtilde1)%*%eta) pix <- px0/(1+px0) Z <- rbinom(n,1,pix) # S-model eta1 <- c( 2,-1,1,-1,1,theta)/2.5 eta0 <- c(-2,1,-1,1,-1,theta)/2.5 p1xtemp <- exp(cbind(1,Xtilde1)%*%eta1) p0xtemp <- exp(cbind(1,Xtilde1)%*%eta0) p1x <- p1xtemp/(1+p1xtemp) p0x <- p0xtemp/(1+p0xtemp) s1<-rbinom(n,1,p1x) s0<-rbinom(n,1,p0x) S<-s1*Z+s0*(1-Z) # Y-model (continuous outcome) Y1<- Xtilde1%*%rep(1,5)*(1+S+Z) +rnorm(n) # Y-model (binary outcome) leYtemp <- Xtilde1%*%rep(1,5)*(1+S+Z)/4 eY<-exp(leYtemp)/(1+exp(leYtemp) ) Y2<-rbinom(n,1,eY) out1<-PSACE::psace(X,Z,S,Y1,family.Y="gaussain",nboot=100) out1$tau10aw out1$ve.tau10aw out2<-PSACE::psace(X,Z,S,Y2,family.Y="binomial",nboot=100) out2$tau10aw out2$ve.tau10aw
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.