bridgr | R Documentation |
Implements a Bayesian version of the Aldrich Mckelvey model to grade data.
bridgr( bridgr.dat, min_grade = NA, max_grade = NA, stan_model = NA, ITER = NA, WARMUP = NA, THIN = NA, CHAINS = NA, CORES = NA )
bridgr.dat |
A |
min_grade |
The minimum possible grade (by default is zero.) |
max_grade |
The maximum possible grade (by default is the maximum observed grade.) |
stan_model |
Rstan model (see manuscript for default implementation.) |
ITER |
RSTAN parameter. A positive integer specifying the number of iterations for each chain (including warmup). The default is 20000. |
WARMUP |
= Rstan parameter. A positive integer specifying the number of warmup (aka burnin) iterations per chain. The default is 1000. |
THIN |
= A positive integer specifying the period for saving samples. The default is 1, |
CHAINS |
Rstan parameter. A positive integer specifying the number of Markov chains. The default is 4. |
CORES |
Rstan parameter. The number of cores to use when executing the Markov chains in parallel. The default is to use the value of the "mc.cores" |
bridgr.dat
Processed version of the input dataset.
coregradmeds
The post-processed (bridged) student
grades on the scale of the input dataset.
zmedsrank
The post-processed (bridged) student ranks.
student_id
Student identifier that can be linked with the input dataset.
data("bridgr.sim.data") # Re-structure the input grading dataset. bridgr.dat <- bridgr.data(df=bridgr.sim.data,student="student", grader.assigned = "grader.assigned", grader="grader",grade="grade") # Correct grading bias using bridging observations. Set cores = NA to utilize more CPU cores. bridgr.sim.results = bridgr(bridgr.dat=bridgr.dat,min_grade=NA,max_grade=NA, CORES = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.