BJSM_6betas_missing_text <- function() {
return(
"model{
for (i in 1:n1){ # n1 is number of first-stage outcomes
# likelihood
Y1[i]~dbern(pi_1[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
}
for (k in 1:n2){ # n2 is number of second-stage outcomes
# likelihood
Y2[k]~dbern(pi_2[k])
# explaining
pi_2[k] <- pi[treatment_stageII[k]] * beta[response_stageI_disc[k]]
}
for (j in 1:num_arms){
pi[j]~pi_prior_dist(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[2]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
beta[3]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[4]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
beta[5]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[6]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
}"
)
}
BJSM_6betas_missing_new_text <- function() {
return(
"model{
for (i in 1:n1){ # n1 is number of first-stage outcomes
# likelihood
Y1[i]~dbern(pi_1[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
}
for (k in 1:n2){ # n2 is number of second-stage outcomes
# likelihood
Y2[k]~dbern(pi_2[k])
# explaining
pi_2[k] <- pi[treatment_stageII[k]] * beta[response_stageI_disc[k]]
}
for (j in 1:num_arms){
pi[j]~dbeta(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~dbeta(beta0_prior.a,beta0_prior.b)
beta[2]~dpar(beta1_prior.a,beta1_prior.c)
beta[3]~dbeta(beta0_prior.a,beta0_prior.b)
beta[4]~dpar(beta1_prior.a,beta1_prior.c)
beta[5]~dbeta(beta0_prior.a,beta0_prior.b)
beta[6]~dpar(beta1_prior.a,beta1_prior.c)
}"
)
}
BJSM_2beta_missing_text <- function() {
return(
"model{
for (i in 1:n1){ # n1 is number of first-stage outcomes
# likelihood
Y1[i]~dbern(pi_1[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
}
for (k in 1:n2){ # n2 is number of second-stage outcomes
# likelihood
Y2[k]~dbern(pi_2[k])
# explaining
pi_2[k] <- pi[treatment_stageII[k]] * beta[response1[k]]
}
for (j in 1:num_arms){
pi[j]~pi_prior_dist(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[2]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
}"
)
}
BJSM_2beta_missing_new_text <- function() {
return(
"model{
for (i in 1:n1){ # n1 is number of first-stage outcomes
# likelihood
Y1[i]~dbern(pi_1[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
}
for (k in 1:n2){ # n2 is number of second-stage outcomes
# likelihood
Y2[k]~dbern(pi_2[k])
# explaining
pi_2[k] <- pi[treatment_stageII[k]] * beta[response1[k]]
}
for (j in 1:num_arms){
pi[j]~dbeta(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~dbeta(beta0_prior.a,beta0_prior.b)
beta[2]~dpar(beta1_prior.a,beta1_prior.c)
}"
)
}
BJSM_dose_text <- function() {
return(
"model{
for(i in 1:overall_sample_size) {
#likelihood
response_stageI[i]~dbern(response_rate_stageI[i])
response_stageII[i]~dbern(response_rate_stageII[i])
#explaining
response_rate_stageI[i]<-pi[treatment_stageI[i]]
response_rate_stageII[i]<-pi[treatment_stageII[i]]*beta[response_discount_status_stageI[i],treatment_stageI[i]]
}
#give prior for first stage
pi[1]~pi_prior_dist(a_pi[1],b_pi[1])
#Consider the relationship between pi_L, pi_H and pi_P
pi[2] <- pi[1]*exp(tau1)
tau1 ~dnorm(normal.mean,1/normal.var)
pi[3] <- pi[1]*exp(tau2)
tau2 ~dnorm(normal.mean,1/normal.var)
for(i in 1:2){
for(j in 1:num_arms){
beta[i,j]~beta_prior_dist(a_beta,b_beta)
}
}
}"
)
}
BJSM_dose_new_text <- function() {
return(
"model{
for(i in 1:overall_sample_size) {
#likelihood
response_stageI[i]~dbern(response_rate_stageI[i])
response_stageII[i]~dbern(response_rate_stageII[i])
#explaining
response_rate_stageI[i]<-pi[treatment_stageI[i]]
response_rate_stageII[i]<-pi[treatment_stageII[i]]*beta[response_discount_status_stageI[i],treatment_stageI[i]]
}
#give prior for first stage
pi[1]~dbeta(a_pi[1],b_pi[1])
#Consider the relationship between pi_L, pi_H and pi_P
pi[2] <- pi[1]*exp(tau1)
tau1 ~dnorm(normal.mean,1/normal.var)
pi[3] <- pi[1]*exp(tau2)
tau2 ~dnorm(normal.mean,1/normal.var)
for(i in 1:2){
for(j in 1:num_arms){
beta[i,j]~dgamma(a_beta,b_beta)
}
}
}"
)
}
csnSMART_text <- function() {
return(
"#continuous snSMART bayesian analysis
#Holly Hartman
#March 18, 2019
#Inputs:
##Y (matrix), trt1, trt2, stay,ntrt,
##priors: xi, phi, tau, sigma
#Estimates:
##xi, phi, tau, sigma
model{
for (i in 1:n){ # n is total sample size
# likelihood
Y[i, 1:2]~dmnorm(mu[i,1:2], rho[stay1[i], , ]) #multivariate normal
#rho is variance-covariance matrix
mu[i,1] <- xi_[trt1[i]]
mu[i,2] <-phi1*xi_[trt1[i]] + (1-phi1)*xi_[trt2[i]]+ phi3*stay[i]
}
#Priors
for (j in 1:ntrt){
xi_[j]~dnorm(xi_prior.mean[j], xi_prior.sd[j])
}
for(k in 1:2){
rho[k,1:2,1:2] ~ dwish(Omega1[,], 2)
}
phi1~dunif(0, 0.5)
phi3~dnorm(0, phi3_prior.sd) T(0,)
V2[1:2, 1:2] <- inverse(rho[1, 1:2, 1:2])
V1[1:2, 1:2] <- inverse(rho[2, 1:2, 1:2])
Omega1[1,1] <- 1
Omega1[2,2] <- 1
Omega1[1,2] <- 0
Omega1[2,1] <- 0
}"
)
}
Bayes_AR_text <- function() {
return(
"model{
for (i in 1:n1){ # n1 is number of first-stage outcomes
# likelihood
Y1[i]~dbern(pi_1[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
}
for (k in 1:n2){ # n2 is number of second-stage outcomes
# likelihood
Y2[k]~dbern(pi_2[k])
# explaining
pi_2[k] <- pi[treatment_stageII[k]] * beta[response_stageI_disc[k]]
}
for (j in 1:num_arms){
pi[j]~pi_prior_dist(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[2]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
beta[3]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[4]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
beta[5]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[6]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
}"
)
}
Bayes_AR_new_text <- function() {
return(
"model{
for (i in 1:n1){ # n1 is number of first-stage outcomes
# likelihood
Y1[i]~dbern(pi_1[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
}
for (k in 1:n2){ # n2 is number of second-stage outcomes
# likelihood
Y2[k]~dbern(pi_2[k])
# explaining
pi_2[k] <- pi[treatment_stageII[k]] * beta[response_stageI_disc[k]]
}
for (j in 1:num_arms){
pi[j]~dbeta(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~dbeta(beta0_prior.a,beta0_prior.b)
beta[2]~dpar(beta1_prior.a,beta1_prior.c)
beta[3]~dbeta(beta0_prior.a,beta0_prior.b)
beta[4]~dpar(beta1_prior.a,beta1_prior.c)
beta[5]~dbeta(beta0_prior.a,beta0_prior.b)
beta[6]~dpar(beta1_prior.a,beta1_prior.c)
}"
)
}
Bayes_text <- function() {
return(
"model{
for (i in 1:n){ # n is total sample size
# likelihood
Y1[i]~dbern(pi_1[i])
Y2[i]~dbern(pi_2[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
pi_2[i] <- pi[treatment_stageII[i]] * beta[response_stageI_disc[i]]
}
for (j in 1:num_arms){
pi[j]~pi_prior_dist(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[2]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
beta[3]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[4]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
beta[5]~beta0_prior_dist(beta0_prior.a,beta0_prior.b)
beta[6]~beta1_prior_dist(beta1_prior.a,beta1_prior.c)
}"
)
}
Bayes_new_text <- function() {
return(
"model{
for (i in 1:n){ # n is total sample size
# likelihood
Y1[i]~dbern(pi_1[i])
Y2[i]~dbern(pi_2[i])
# explaining
pi_1[i] <- pi[treatment_stageI[i]]
pi_2[i] <- pi[treatment_stageII[i]] * beta[response_stageI_disc[i]]
}
for (j in 1:num_arms){
pi[j]~dbeta(pi_prior.a[j],pi_prior.b[j])
}
beta[1]~dbeta(beta0_prior.a,beta0_prior.b)
beta[2]~dpar(beta1_prior.a,beta1_prior.c)
beta[3]~dbeta(beta0_prior.a,beta0_prior.b)
beta[4]~dpar(beta1_prior.a,beta1_prior.c)
beta[5]~dbeta(beta0_prior.a,beta0_prior.b)
beta[6]~dpar(beta1_prior.a,beta1_prior.c)
}"
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.