Distribution: Class distribution

distributionR Documentation

Class distribution

Description

Holds a univariate distribution including its parameters. The name of the distribution is used to determine, for example the function for quantiles: paste0("q", name). Usually the full name has to be used; some abbreviated names are possible

  • binom binomial distribution, parameters: size, prob

  • hyper hypergeometric distribution, parameters: m, n, k

  • geom geometric distribution, parameters: prob

  • pois Poisson distribution, parameters: lambda

  • unif continuous uniform distribution, parameters: min, max

  • dunif discrete uniform distribution, parameters: min, max

  • dunif2 continuous uniform distribution, parameters: min, max

  • exp exponential distribution, parameter: rate

  • norm normal distribution, parameters: mean, sd

  • lnorm log-normal distribution, parameters: meanlog, sdlog

  • t Student t distribution, parameter: df

  • chisq chi-squared distribution, parameter: df

  • f F distribution, parameters: df1, df2

Note that a probability mass/density, quantile and cumulative distribution function must exist.

The following functions exists for disributions:

  • distribution creates a distribution with name name and parameters

  • quantile computes the quantiles of a distribution using paste0('q', name)

  • cdf computes the cumulative distribution function of a distribution using paste0('p', name)

  • pmdf computes the probability mass/density function of a distribution using paste0('d', name)

  • prob computes the probability for a interval between min and max (max included, min excluded)

  • prob1 computes the point probability f

  • is.distribution checks if object is distribution object. If name is given then it checks if distribution type is the same

  • toLatex generates a LaTeX representation of the distribution an its parameter

Usage

distribution(name, ...)

## Default S3 method:
distribution(name, ..., discrete = NA)

## S3 method for class 'distribution'
quantile(x, probs = seq(0, 1, 0.25), ...)

cdf(x, q, ...)

pmdf(d, x, ...)

## S3 method for class 'distribution'
toLatex(object, name = NULL, param = NULL, digits = 4, ...)

is.distribution(object, name = NULL)

prob(d, min = -Inf, max = +Inf, tol = 1e-06)

prob1(d, x, tol = 1e-06)

Arguments

name

character: a replacement of the name of the distribtuion type

...

further named distribution parameters

discrete

logical: Is distribution discrete? (default: NA)

x

vector of values

probs

numeric: vector of probabilities with values in [0,1].

q

numeric: vector of quantiles

d

distribution

object

distribution object

param

character: names for the distribution parameters

digits

integer: number of digits used in signif

min

numeric: left border of interval

max

numeric: right border of interval

tol

numeric: tolerance for max==min (default: 1e-6)

Value

a distribution object

Examples

d <- distribution("norm", mean=0, sd=1)
quantile(d)
quantile(d, c(0.025, 0.975))
cdf(d, 0)
is.distribution(d)
is.distribution(d, "t")
toLatex(d)
# see the LaTeX names
data(distributions)
distributions

sigbertklinke/exams2moodle documentation built on July 6, 2023, 3:26 p.m.