association | R Documentation |
Various association coefficients for nominal and ordinal data; the input formats follows stats::chisq.test()
.
concordant
concordant pairs
discordant
discordant pairs
ties.row
pairs tied on rows
ties.col
pairs tied on columns
nom.phi
Phi Coefficient
nom.cc
Contingency Coefficient (Pearson's C) and Sakoda' s Adjusted Pearson's C
nom.TT
Tshuprow's T (not meaningful for non-square tables)
nom.CV
Cramer's V (for 2 x 2 tables V = Phi)
nom.lambda
Goodman and Kruskal's Lambda with
lambda.cr
The row variable is used as independent, the column variable as dependent variable.
lambda.rc
The column variable is used as independent, the row variable as dependent variable.
lambda.symmetric
Symmetric Lambda (the mean of both above).
nom.uncertainty
Uncertainty Coefficient (Theil's U) with
ucc.cr
The row variable is used as independent, the column variable as dependent variable.
uc.rc
The column variable is used as independent, the row variable as dependent variable.
uc.symmetric
Symmetric uncertainty coefficient.
ord.gamma
Gamma coefficient
ord.tau
a vector with Kendall-Stuart Tau's
tau.a
Tau-a (for quadratic tables only)
tau.b
Tau-b
tau.c
Tau-c
ord.somers.d
Somers' d
eta
Eta coefficient for nominal/interval data
concordant(x, y = NULL)
discordant(x, y = NULL)
ties.row(x, y = NULL)
ties.col(x, y = NULL)
nom.phi(x, y = NULL)
nom.cc(x, y = NULL)
nom.TT(x, y = NULL)
nom.CV(x, y = NULL)
nom.lambda(x, y = NULL)
nom.uncertainty(x, y = NULL)
ord.gamma(x, y = NULL)
ord.tau(x, y = NULL)
ord.somers.d(x, y = NULL)
eta(x, y, breaks = NULL)
x |
a numeric vector, table or matrix. |
y |
a numeric vector; ignored if |
breaks |
either a numeric vector of two or more unique cut points or a single number (greater than or equal to 2)
giving the number of intervals into which |
the association coefficient(s)
From the archived ryouready
package by Mark Heckmann.
The code for the calculation of nom.lambda
, nom.uncertainty
, ord.gamma
, ord.tau
, ord.somers.d
was supplied by Marc Schwartz (under GPL 2) and checked against SPSS results.
## Nominal data
# remove gender from the table
hec <- apply(HairEyeColor, 1:2, sum)
nom.phi(hec)
nom.cc(hec)
nom.TT(hec)
nom.CV(hec)
nom.lambda(hec)
nom.uncertainty(hec)
## Ordinal data
# create a fake data set
ordx <- sample(5, size=100, replace=TRUE)
ordy <- sample(5, size=100, replace=TRUE)
concordant(ordx, ordy)
discordant(ordx, ordy)
ties.row(ordx, ordy)
ties.col(ordx, ordy)
ord.gamma(ordx, ordy)
ord.tau(ordx, ordy)
ord.somers.d(ordx, ordy)
## Interval/nominal data
eta(iris$Species, iris$Sepal.Length)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.