Description Usage Arguments Value References See Also Examples
Calling compute_mlpin()
returns the probability of informed trading as
presented in the paper of Easley et al. (1996).
The estimation procedure in estimate_mlekop()
uses the logits of the
rates alpha
and delta
to ensure a more stable optimization. To arrive
at the original parameter estimates the logistic transformation from
logistic()
is applied.
1 |
par |
A vector containing the parameter estimates from the optimization procedure. |
A double holding the PIN estimate.
Easley, D., Kiefer, N., O’Hara, M., Paperman, J., 1996. Liquidity, information, and infrequently traded stocks. Journal of Finance 51, 1405–1436.
estimate_mlekop()
for the calling function.
1 2 3 4 5 6 7 | # Simulate trades data.
trades_data <- simulate_ekop()
# Estimate the EKOP model.
pin_optml <- estimate_mlekop(trades_data, methodLik="approx",
fnLik="compute_ekop_orig_lik")
# Estimate the PIN from the parameter estimates.
compute_mlpin(pin_optml$par)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.