## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
# load 'localSCR' package
library(localSCR)
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate a single trap array with random positional noise
# x <- seq(-800, 800, length.out = 5)
# y <- seq(-800, 800, length.out = 5)
# traps <- as.matrix(expand.grid(x = x, y = y))
# set.seed(200)
# traps <- traps + runif(prod(dim(traps)),-20,20)
#
# mysigma = c(300) # simulate sex-specific scaling parameter
# mycrs = 32608 # EPSG for WGS 84 / UTM zone 8N
# pixelWidth = 200 # store pixelWidth or grid resolution
#
# # create state-space
# Grid = grid_classic(X = traps, crs_ = mycrs, buff = 3*mysigma,
# res = pixelWidth)
#
# # create polygon for mask
# library(sf)
# poly = st_sfc(st_polygon(x=list(matrix(c(-1765,-1765,1730,-1650,1600,
# 1650,0,1350,-800,1700,-1850,1000,-1765,-1765)
# ,ncol=2, byrow=TRUE))), crs = mycrs)
#
# # create habitat mask
# hab_mask = mask_polygon(poly = poly, grid = Grid$grid, crs_ = mycrs,
# prev_mask = NULL)
#
# # Simulated abundance
# Nsim = 200
#
# # simulate data for uniform state-space and habitat mask
# data3d = sim_classic(X = traps, ext = Grid$ext, crs_ = mycrs,
# sigma_ = mysigma, prop_sex = 1, N = Nsim, K = 4,
# base_encounter = 0.15,enc_dist = "binomial",
# hab_mask = hab_mask, setSeed = 200)
#
# # total augmented population size
# M = 400
#
# # get initial activity center starting values
# s.st = initialize_classic(y=data3d$y, M=M, X=traps, ext = Grid$ext,
# hab_mask = hab_mask)
#
# # convert traps and starting locations to discrete format
# d_list = discretize_classic(X=traps, grid = Grid$grid, s.st = s.st,
# crs_ = mycrs, hab_mask = hab_mask)
#
# # inspect discrete data list
# str(d_list)
# #> List of 4
# #> $ grid: num [1:270, 1:2] -808 -608 1592 -1208 -1008 ...
# #> ..- attr(*, "dimnames")=List of 2
# #> .. ..$ : NULL
# #> .. ..$ : chr [1:2] "x" "y"
# #> $ nPix: int 270
# #> $ X : num [1:25, 1:2] -807.71 -407.71 -7.71 392.29 792.29 ...
# #> ..- attr(*, "dimnames")=List of 2
# #> .. ..$ : NULL
# #> .. ..$ : chr [1:2] "x" "y"
# #> $ s.st: int [1:400] 174 194 54 178 130 91 156 163 190 193 ...
#
# # make ggplot of grid, and discretized trap locations
# # and starting activity center locations
# library(ggplot2)
# ggplot() + geom_point(data=as.data.frame(d_list$grid),aes(x=x,y=y),
# color="grey60",size=2) +
# geom_point(data=as.data.frame(d_list$X),aes(x=x,y=y),color="blue",size=3) +
# geom_point(data=as.data.frame(d_list$grid[d_list$s.st,]),
# aes(x=x,y=y),color="orangered",size=0.75) +
# theme_classic() + ylab("Northing") + xlab("Easting") +
# theme(axis.text = element_text(size=12),
# axis.title = element_text(size=16))
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # prepare data
# data = list(y=data3d$y)
# data$y = data$y[which(apply(data$y, 1, sum)!=0),,] # remove augmented records
# # covert to 2d by summing over individuals and traps
# data$y = apply(data$y, c(1,2), sum)
#
# # add discretized traps
# data$X = d_list$X/1000 # convert to km units
#
# # add grid
# data$grid = d_list$grid/1000 # convert to km units
#
# # prepare constants (note that density is now in activity centers/km2
# # and each cell is now 0.01 km2 in area
# constants = list(M = M,n0 = nrow(data$y),J=dim(data$y)[2],
# K=dim(data3d$y)[3],nPix=d_list$nPix,pixArea = (pixelWidth/1000)^2,
# sigma_upper = 1, A = sum(hab_mask)*((pixelWidth/1000)^2))
#
# # add z and zeros vector data for latent inclusion indicator
# data$z = c(rep(1,constants$n0),rep(NA,constants$M - constants$n0))
# data$zeros = c(rep(NA,constants$n0),rep(0,constants$M - constants$n0))
#
# # define all initial values
# inits = list(sigma = runif(1, 0.250, 0.350), s = d_list$s.st,
# alpha0 = 2.8, p0 = runif(1, 0.05, 0.15),
# z=c(rep(NA,constants$n0),rep(0,constants$M-constants$n0)))
#
# # parameters to monitor
# params = c("sigma","psi","p0","N","D","EN","alpha0","s","z")
#
# # get model
# discrete_model = get_discrete(type="marked",dim_y = 2,
# enc_dist = "binomial",sex_sigma = FALSE,
# trapsClustered=FALSE)
#
# # show model (not run)
# # discrete_model
#
# # run model (note this was run on a Mac with 16 GB 2667 MHz DDR4
# # and 2.3 GHz 8-Core Intel Core i9)
# library(tictoc)
# tic() # track time elapsed
# out = run_discrete(model = discrete_model, data=data, constants=constants,
# inits=inits, params = params,niter = 5000, nburnin=1000,
# thin=1, nchains=2, parallel=TRUE, RNGseed = 500)
# toc()
# #> 1025.869 sec elapsed
#
# # histogram of posterior samples for N (abundance)
# samples = do.call(rbind, out)
# par(mfrow=c(1,1))
# hist(samples[,which(dimnames(out[[1]])[[2]]=="N")], xlab = "Abundance",
# xlim = c(0,400), main="")
# abline(v=Nsim, col="red") # add line for simulated abundance
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # summarize MCMC samples (exclude parameters and don't plot)
# nimSummary(out, exclude = c("s","z"), trace=FALSE)
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 18.222 1.768 15.093 18.148 21.944 1 314.957 1.006
# #> EN 196.003 21.492 157.391 194.404 241.130 1 307.866 1.006
# #> N 196.798 19.091 163.000 196.000 237.000 1 314.957 1.006
# #> alpha0 2.893 0.110 2.679 2.890 3.106 1 316.798 1.006
# #> p0 0.167 0.023 0.126 0.167 0.214 1 316.707 1.016
# #> psi 0.490 0.054 0.393 0.486 0.603 1 307.866 1.006
# #> sigma 0.310 0.021 0.274 0.308 0.358 1 201.439 1.043
#
# # make realized density plot (we don't use the habitat mask here for
# # discrete model)
# r = realized_density(samples = out, grid = d_list$grid, crs_ = mycrs,
# site = NULL, hab_mask = FALSE,discrete=TRUE)
#
# # load virdiis color palette and raster libraries
# library(viridis)
# library(raster)
#
# # make simple raster plot
# plot(r, col=viridis(100),
# main=expression("Realized density (activity centers/0.2 km"^2*")"),
# ylab="Northing",xlab="Easting")
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # create an array of traps, as an approach where individuals will only be
# # detected at one of the trap arrays (e.g., Furnas et al. 2018)
# Xarray = array(NA, dim=c(nrow(traps),2,2))
# Xarray[,,1]=traps
# Xarray[,,2]=traps+6000 # shift trapping grid to new locations
#
# # create grid and extent for 3D trap array
# GridX = grid_classic(X = Xarray, crs_ = mycrs, buff = 3*max(mysigma),
# res = pixelWidth)
#
# # create polygon to use as a mask
# library(sf)
# poly = st_sfc(st_polygon(x=list(matrix(c(-1660,-1750,8730,-1050,7470,
# 7550,0,7950,-1800,8200,-1660,-1750),ncol=2, byrow=TRUE))), crs = mycrs)
#
# # make ggplot
# g1=ggplot() + geom_point(data=as.data.frame(GridX$grid[,,1]),
# aes(x=V1,y=V2),color="grey60",size=1.25) +
# geom_point(data=as.data.frame(Xarray[,,1]),
# aes(x=V1,y=V2),color="blue",size=2) +
# geom_point(data=as.data.frame(GridX$grid[,,2]),
# aes(x=V1,y=V2),color="grey60",size=1.25) +
# geom_point(data=as.data.frame(Xarray[,,2]),
# aes(x=V1,y=V2),color="blue",size=2) +
# geom_sf(data=poly, fill = NA) + coord_sf(datum=st_crs(mycrs)) +
# theme_classic() + ylab("Northing") + xlab("Easting") +
# scale_x_continuous(limits=c(-2000,9000)) +
# scale_y_continuous(limits=c(-2000,9000)) +
# theme(axis.text = element_text(size=12),
# axis.title = element_text(size=16))
## ---- fig.show='hide',fig.width = 8,fig.height=14,eval=FALSE------------------
# # get 3D habitat mask array for 3D grid
# hab_mask = mask_polygon(poly = poly, grid = GridX$grid, crs_ = mycrs,
# prev_mask = NULL)
#
# # simuated population size
# Nsim = 300
#
# # augmented population size
# M=600
#
# # simulate data for uniform state-space and habitat mask
# # (N is simulated abundance)
# data4d = sim_classic(X = Xarray, ext = GridX$ext, crs_ = mycrs,
# sigma_ = mysigma, prop_sex = 1,N = Nsim,
# K = 4, base_encounter = 0.15,
# enc_dist = "binomial",hab_mask = hab_mask,
# setSeed = 300)
#
# # augment site identifier
# site = c(data4d$site,c(rep(1,((M-length(data4d$site))/2)),
# rep(2,((M-length(data4d$site))/2))))
#
# # get initial activity center starting values
# s.st = initialize_classic(y=data4d$y, M=M, X=Xarray, ext = GridX$ext,
# site = site, hab_mask = hab_mask)
#
# # convert traps and starting locations to discrete format
# d_list = discretize_classic(X=Xarray, grid = GridX$grid, s.st = s.st,
# crs_ = mycrs,site=site, hab_mask = hab_mask)
#
# # inspect discrete data list
# str(d_list)
# #> List of 4
# #> $ grid: num [1:284, 1:2, 1:2] -1608 -1408 -1208 -1008 -808 ...
# #> $ nPix: int [1:2] 284 278
# #> $ X : num [1:25, 1:2, 1:2] -807.71 -407.71 -7.71 392.29 792.29 ...
# #> $ s.st: num [1:600] 98 115 115 165 77 94 77 96 75 109 ...
#
# # prepare data
# data = list(y=data4d$y)
# data$y = data$y[which(apply(data$y, 1, sum)!=0),,] # remove augmented records
# # covert to 2d by summing over individuals and traps
# data$y = apply(data$y, c(1,2), sum)
#
# # add discretized traps
# data$X = d_list$X #/1000 # convert to km units
#
# # add grid
# data$grid = d_list$grid #/1000 # convert to km units
#
# # prepare constants (note that density is now in activity centers/km2
# # and each cell is now 0.02 km2 in area
# constants = list(M = M,n0 = nrow(data$y),J=dim(data$y)[2],site=site,
# K=dim(data4d$y)[3],nPix=sum(d_list$nPix),
# pixArea = (pixelWidth^2),
# sigma_upper = 1000,
# A = (sum(hab_mask)*((pixelWidth/1000)^2)),
# nSites = dim(d_list$X)[3])
#
# constants$npixSite = matrix(c(1,d_list$nPix[1],
# d_list$nPix[1]+1,
# sum(d_list$nPix)),
# ncol=2,byrow=TRUE)
#
# # add z and zeros vector data for latent inclusion indicator
# data$z = c(rep(1,constants$n0),rep(NA,constants$M - constants$n0))
# data$zeros = c(rep(NA,constants$n0),rep(0,constants$M - constants$n0))
#
# # define all initial values
# inits = list(sigma = runif(1, 250, 350), s = d_list$s.st,
# alpha0 = -11.25, p0 = runif(dim(d_list$X)[3], 0.05, 0.15),
# z=c(rep(NA,constants$n0),rep(0,constants$M-constants$n0)))
#
# # parameters to monitor
# params = c("sigma","psi","p0","N","D","EN","alpha0","s","z")
#
# # get model
# discrete_model = get_discrete(type="marked",dim_y = 2,
# enc_dist = "binomial",sex_sigma = FALSE,
# trapsClustered=TRUE)
#
# # show model (not run)
# # discrete_model
#
# # run model (note this was run on a Mac with 16 GB 2667 MHz DDR4
# # and 2.3 GHz 8-Core Intel Core i9)
# library(tictoc)
# tic() # track time elapsed
# out = run_discrete(model = discrete_model, data=data, constants=constants,
# inits=inits, params = params,niter = 5000, nburnin=1000,
# thin=1, nchains=2, parallel=TRUE, RNGseed = 500)
# toc()
# #> 1612.656 sec elapsed
#
# # histogram of posterior samples for N (abundance)
# samples = do.call(rbind, out)
# par(mfrow=c(1,1))
# hist(samples[,which(dimnames(out[[1]])[[2]]=="EN")], xlab = "Expected abundance",
# xlim = c(0,600), main="")
# abline(v=Nsim, col="red") # add line for simulated abundance
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # summary table of MCMC output (exclude "s" and "z" parameters)
# nimSummary(out, exclude = c("s","z"))
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 13.131 1.397 10.676 12.989 16.192 1 175.165 1.011
# #> EN 294.564 33.831 232.157 291.304 367.164 1 178.972 1.011
# #> N 295.180 31.395 240.000 292.000 364.000 1 175.165 1.011
# #> alpha0 -11.249 0.114 -11.481 -11.254 -11.022 0 188.347 1.013
# #> p0[1] 0.148 0.025 0.104 0.147 0.199 1 294.255 1.033
# #> p0[2] 0.128 0.023 0.088 0.127 0.179 1 324.642 1.032
# #> psi 0.491 0.056 0.387 0.486 0.612 1 178.972 1.011
# #> sigma 287.695 23.052 250.820 284.677 339.804 1 139.887 1.103
#
# # generate realized density surface
# r = realized_density(samples=out, grid=d_list$grid, ext = GridX$ext,
# crs_=mycrs,site=constants$site, discrete=TRUE)
#
# # load needed packages for multiplot
# library(viridis)
# library(grid)
# library(cowplot)
# library(ggpubr)
# library(rasterVis)
#
# # plot raster from site 1
# p1<-gplot(r[[1]]) + geom_raster(aes(fill = value)) +
# scale_fill_viridis(na.value = NA, name="Density",
# limits=c(0,1.5),breaks=seq(0,1.5,by=0.5)) +
# xlab("") + ylab("") + theme_classic() +
# scale_x_continuous(expand=c(0, 0)) +
# scale_y_continuous(expand=c(0, 0)) +
# theme(axis.text = element_text(size=18))
#
# # plot raster from site 2
# p2<-gplot(r[[2]]) + geom_raster(aes(fill = value)) +
# scale_fill_viridis(na.value = NA, name="Density",
# limits=c(0,1.5),breaks=seq(0,1.5,by=0.5)) +
# xlab("") + ylab("") + theme_classic() +
# scale_x_continuous(expand=c(0, 0)) +
# scale_y_continuous(expand=c(0, 0)) +
# theme(axis.text = element_text(size=18))
#
# # arrange the two plots in a single row
# prow <- plot_grid(p1 + theme(legend.position="none"),
# p2 + theme(legend.position="none"),
# align = 'vh',
# labels = NULL,
# hjust = -1,
# nrow = 1
# )
#
# # extract the legend from one of the plots
# legend_t <- get_legend(p1 + theme(legend.position = "top",
# legend.direction = "horizontal",
# legend.text = element_text(size=14),
# legend.title = element_text(size=16)))
#
# # add the legend above the row we made earlier. Give it 20% of the height
# # of one plot (via rel_heights).
# pcomb <- plot_grid(legend_t, prow, ncol = 1, rel_heights = c(.2, 1))
#
# # add x and y axis labels
# pcomb <-annotate_figure(pcomb, bottom = textGrob("Easting",
# gp=gpar(fontsize=18), vjust = -1, hjust = 0),
# left = textGrob("Northing", rot=90, gp=gpar(fontsize=18),
# vjust = 1, hjust = 0.5))
# pcomb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.