## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
# load 'localSCR' package
library(localSCR)
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate a single trap array with random positional noise
# x <- seq(-1600, 1600, length.out = 6)
# y <- seq(-1600, 1600, length.out = 6)
# traps <- as.matrix(expand.grid(x = x, y = y))
# # add some random noise to locations
# set.seed(100)
# traps <- traps + runif(prod(dim(traps)),-20,20)
# mysigma = 300 # simulate sigma of 300 m
# mycrs = 32608 # EPSG for WGS 84 / UTM zone 8N
# pixelWidth = 100 # grid resolution
#
# # Simulated abundance
# Nsim = 250
#
# # manually create state-space grid and extent (note that I ran the code through
# # the localize_classic() using the same settings as other vignettes for
# # grid_classic() without using a habitat mask to get the extent
# # for the scaled-up state-space grid)
#
# # make raster layer of grid
# r_grid = raster::raster(xmn=-2698.706,xmx=2701.294,ymn=-2700.908,ymx=2699.092,
# res = pixelWidth, crs = mycrs)
# Grid = list() # create Grid list
# Grid$grid = raster::coordinates(r_grid)
# Grid$ext = raster::extent(r_grid)
#
# # create polygon to use as a mask
# library(sf)
# poly = st_sfc(st_polygon(x=list(matrix(c(-2465,-2465,2530,-2550,2650,2550,
# 0,2550,-800,2500,-2350,2300,-2465,-2465),ncol=2, byrow=TRUE))), crs = mycrs)
#
# # make simple plot
# par(mfrow=c(1,1))
# plot(Grid$grid, pch=20, col="gray60")
# points(traps, col="blue",pch=20)
# plot(poly, add=TRUE)
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # create habitat mask from polygon
# hab_mask = mask_polygon(poly = poly, grid = Grid$grid, crs_ = mycrs,
# prev_mask = NULL)
#
# # simulate SCR data
# data3d = sim_classic(X = traps, ext = Grid$ext, crs_ = mycrs, sigma_ = mysigma,
# prop_sex = 1, N = Nsim, K = 4, base_encounter = 0.15,
# enc_dist = "binomial", hab_mask = hab_mask, setSeed = 100)
#
# # augmented population size (detected + augmented individuals)
# M=500
#
# # generate initial activity center coordinates for 2D trap array without
# # habitat mask
# s.st = initialize_classic(y=data3d$y, M=M, X=traps, ext = Grid$ext,
# hab_mask = hab_mask)
#
# # now use grid_classic to create an individual-level state-space (with origin 0, 0)
# Grid_ind = grid_classic(X = matrix(c(0,0),nrow=1), crs_ = mycrs, buff = 3*mysigma, res = 100)
#
# # now localize the data components created above (a bit time consuming ~ 20 sec)
# # set layers to equal to evenly augment state-space
# library(tictoc)
# tic()
# local_list = localize_classic(y = data3d$y, grid_ind = Grid_ind$grid, X=traps,
# crs_ = mycrs, sigma_ = mysigma, s.st = s.st,
# hab_mask = hab_mask)
# toc()
# #> 40.25 sec elapsed
#
# # inspect local_list
# str(local_list)
# #> List of 8
# #> $ y : int [1:99, 1:36, 1:4] 0 0 0 0 0 0 0 0 0 0 ...
# #> $ X : num [1:500, 1:36, 1:2] -1608 -965 -970 965 -1588 ...
# #> $ grid : num [1:2916, 1:2] -2649 -2549 -2449 -2349 -2249 ...
# #> ..- attr(*, "dimnames")=List of 2
# #> .. ..$ : NULL
# #> .. ..$ : chr [1:2] "x" "y"
# #> $ prop_habitat: num [1:500] 1 1 1 1 0.981 ...
# #> $ ext_mat : num [1:500, 1:4] -573 -1226 -572 716 -1843 ...
# #> $ ext :Formal class 'Extent' [package "raster"] with 4 slots
# #> .. ..@ xmin: num -2699
# #> .. ..@ xmax: num 2701
# #> .. ..@ ymin: num -2701
# #> .. ..@ ymax: num 2699
# #> $ Jind : num [1:500] 35 26 35 19 24 24 24 26 35 25 ...
# #> $ s.st : num [1:500, 1:2] 327 -326 328 1616 -943 ...
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # rescale inputs
# rescale_list = rescale_local(X = local_list$X, ext = local_list$ext,
# ext_mat = local_list$ext_mat,
# s.st = local_list$s.st, hab_mask = hab_mask)
#
# # prepare encounter data data
# data = list(y=local_list$y)
# data$y = apply(data$y, c(1,2), sum) # covert to 2d by summing over individuals and traps
#
# # add rescaled traps
# data$X = rescale_list$X
#
# # prepare constants (rescale area to activity centers/km 2)
# constants = list(M = M,n0 = nrow(data$y),Jind = local_list$Jind, K = 4,
# xy_bounds = rescale_list$ext_mat, sigma_upper = 1000,
# pixelWidth=pixelWidth,
# A = prod(c(abs(diff(local_list$ext[1:2]))/1000,
# abs(diff(local_list$ext[3:4]))/1000)))
#
# # add z and zeros vector data for latent inclusion indicator
# data$z = c(rep(1,constants$n0),rep(NA,constants$M - constants$n0))
# data$zeros = c(rep(NA,constants$n0),rep(0,constants$M - constants$n0))
#
# # add hab_mask,OK for habitat check, and proportion of available habitat
# data$hab_mask = hab_mask
# data$OK = rep(1,constants$M)
# data$prop.habitat = local_list$prop_habitat
#
# # define all initial values
# inits = list(sigma = runif(1, 250, 350), s = rescale_list$s.st,psi=runif(1,0.2,0.3),
# p0 = runif(1, 0.05, 0.15), z=c(rep(NA,constants$n0),rep(0,constants$M-constants$n0)),
# pOK=data$OK)
#
# # parameters to monitor
# params = c("sigma","psi","p0","N","D","s","z")
#
# # get model
# scr_model = get_classic(dim_y = 2, enc_dist = "binomial",sex_sigma = FALSE,
# hab_mask=TRUE,trapsClustered = FALSE)
#
# # show lines of model to help with editing
# print_model(scr_model)
#
# # add code to inject localization lines
# add_model = nimble::nimbleCode({
# z[i] ~ dbern(psim[i])
# psim[i] <- (1 - (1 - psi)^prop.habitat[i])
# s[i,1] ~ dunif(xy_bounds[i,1], xy_bounds[i,2])
# s[i,2] ~ dunif(xy_bounds[i,3], xy_bounds[i,4])
# dist[i, 1:Jind[i]] <- sqrt((s[i,1] - X[i,1:Jind[i],1])^2 + (s[i, 2] - X[i,1:Jind[i], 2])^2)
# p[i,1:Jind[i]] <- p0 * exp(-dist[i, 1:Jind[i]]^2/(2 * sigma.pixel^2))
# for (i in 1:n0) {
# for (j in 1:Jind[i]) {
# y[i, j] ~ dbin(p[i, j], K)
# }
# }
# for (i in (n0 + 1):M) {
# zeros[i] ~ dbern((1 - prod(1 - p[i, 1:Jind[i]])^K) * z[i])
# }
# })
#
# # edit model (injecting two new lines on line 7, otherwise 1-1 line replacement)
# local_model = customize_model(model = scr_model,append_code = add_model,
# remove_line = c(7,8:9,12:13,15:22),
# append_line = c(7,7,8:9,12:13,15:22))
#
# # run model
# library(tictoc)
# tic() # track time elapsed
# out = run_classic(model = local_model, data=data, constants=constants,
# inits=inits, params = params, niter = 10000, nburnin=1000,
# thin=1, nchains=2, parallel=TRUE, RNGseed = 500)
# toc()
# #> 125.08 sec elapsed
#
# # summarize output
# samples = do.call(rbind, out)
# par(mfrow=c(1,1))
# hist(samples[,which(dimnames(out[[1]])[[2]]=="N")], xlab = "Abundance", xlim = c(0,500), main="")
# abline(v=Nsim, col="red") # add line for simulated abundance
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # summarize MCMC samples (exclude parameters and don't plot)
# nimSummary(out, exclude = c("s","z"), trace=FALSE)
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 8.901 1.099 7.064 8.779 11.351 1 346.433 1.013
# #> N 259.560 32.057 206.000 256.000 331.000 1 346.433 1.013
# #> p0 0.194 0.039 0.127 0.191 0.280 1 361.349 1.014
# #> psi 0.567 0.069 0.446 0.561 0.716 1 330.496 1.014
# #> sigma 272.652 22.015 233.584 271.202 322.137 1 294.354 1.004
#
# # make realized density plot
# r = realized_density(samples = out, grid = local_list$grid,
# crs_ = mycrs, hab_mask = hab_mask)
#
# # load virdiis color palette and raster libraries
# library(viridis)
# library(raster)
#
# # make simple raster plot
# plot(r, col=viridis(100),
# main=expression("Realized density (activity centers/100 m"^2*")"),
# ylab="Northing",xlab="Easting")
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate a single trap array with random positional noise
# x <- seq(-1600, 1600, length.out = 6)
# y <- seq(-1600, 1600, length.out = 6)
# traps <- as.matrix(expand.grid(x = x, y = y))
# # add some random noise to locations
# set.seed(100)
# traps <- traps + runif(prod(dim(traps)),-20,20)
# mysigma = 300 # simulate sigma of 300 m
# mycrs = 32608 # EPSG for WGS 84 / UTM zone 8N
# pixelWidth = 100 # grid resolution
#
# # Simulated abundance
# Nsim = 400
#
# # create an array of traps, as an approach where individuals will only be detected
# # at one of the trap arrays (e.g., Furnas et al. 2018)
# Xarray = array(NA, dim=c(nrow(traps),2,2))
# Xarray[,,1]=traps
# Xarray[,,2]=traps+10000 # shift trapping grid to new locations
#
# # create grid and extent for 3D trap array
# GridX = grid_classic(X = Xarray, crs_ = mycrs, buff = 3*max(mysigma), res = 100)
#
# # create polygon to use as a mask
# library(sf)
# poly = st_sfc(st_polygon(x=list(matrix(c(-2160,-2900,14430,-1550,12270,
# 12400,0,13050,-2800,13100,-2160,-2900),ncol=2, byrow=TRUE))), crs = mycrs)
#
# # make a simple plot
# plot(Xarray[,,1],xlim=c(-3000,16000),ylim=c(-3000,16000),
# xlab="Easting",ylab="Northing")
# points(GridX$grid[,,2],col="gray60",pch=20)
# points(GridX$grid[,,1],col="gray60",pch=20)
# points(Xarray[,,1],pch=20,col="blue")
# points(Xarray[,,2],pch=20,col="blue")
# plot(poly, add=TRUE)
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # get 3D habitat mask array for 3D grid
# hab_mask = mask_polygon(poly = poly, grid = GridX$grid, crs_ = mycrs,
# prev_mask = NULL)
#
# # simulate data for uniform state-space and habitat mask (N is simulated abundance)
# data4d = sim_classic(X = Xarray, ext = GridX$ext, crs_ = mycrs, sigma_ = mysigma,
# prop_sex = 1,N = Nsim, K = 4, base_encounter = 0.15,
# enc_dist = "binomial",hab_mask = hab_mask, setSeed = 500)
#
# M=800
#
# # augment site identifier
# site = c(data4d$site,c(rep(1,((M-length(data4d$site))/2)),
# rep(2,((M-length(data4d$site))/2))))
#
# # get initial activity center starting values
# s.st = initialize_classic(y=data4d$y, M=M, X=Xarray, ext=GridX$ext,
# site = site, hab_mask = hab_mask)
#
# # now use grid_classic to create an individual-level state-space (with origin 0, 0)
# Grid_ind = grid_classic(X = matrix(c(0,0),nrow=1), crs_ = mycrs, buff = 3*mysigma, res = 100)
#
# # now localize the data components created above (a bit time consuming ~ 40 sec)
# # set layers to equal to evenly augment state-space
# library(tictoc)
# tic()
# local_list = localize_classic(y = data4d$y, grid_ind = Grid_ind$grid, X=Xarray,
# crs_ = mycrs, sigma_ = mysigma, s.st = s.st,
# site = site,hab_mask = hab_mask)
# toc()
#
# # inspect local list
# str(local_list)
# #> List of 8
# #> $ y : int [1:150, 1:36, 1:4] 0 0 0 0 0 0 0 0 0 0 ...
# #> $ X : num [1:800, 1:36, 1:2] 965 -970 959 -1608 -1588 ...
# #> $ grid : num [1:2916, 1:2, 1:2] -2649 -2549 -2449 -2349 -2249 ...
# #> $ prop_habitat: num [1:800] 1 1 1 1 1 ...
# #> $ ext_mat : num [1:800, 1:4] 716 707 691 -593 -1843 ...
# #> $ ext :List of 2
# #> ..$ :Formal class 'Extent' [package "raster"] with 4 slots
# #> .. .. ..@ xmin: num -2699
# #> .. .. ..@ xmax: num 2701
# #> .. .. ..@ ymin: num -2701
# #> .. .. ..@ ymax: num 2699
# #> ..$ :Formal class 'Extent' [package "raster"] with 4 slots
# #> .. .. ..@ xmin: num 7301
# #> .. .. ..@ xmax: num 12701
# #> .. .. ..@ ymin: num 7299
# #> .. .. ..@ ymax: num 12699
# #> $ Jind : num [1:800] 19 21 24 32 24 26 30 25 29 24 ...
# #> $ s.st : num [1:800, 1:2] 1616 1607 1591 307 -943 ...
#
# # rescale inputs
# rescale_list = rescale_local(X = local_list$X, ext = local_list$ext, ext_mat = local_list$ext_mat,
# s.st = local_list$s.st, site = site, hab_mask = hab_mask)
#
# # prepare encounter data data
# data = list(y=local_list$y)
# data$y = apply(data$y, c(1,2), sum) # covert to 2d by summing over individuals and traps
#
# # add rescaled traps
# data$X = rescale_list$X
#
# # prepare constants (rescale area to activity centers/km 2)
# constants = list(M = M,n0 = nrow(data$y),Jind = local_list$Jind, K = 4,
# xy_bounds = rescale_list$ext_mat, sigma_upper = 1000,
# pixelWidth=pixelWidth,
# A = (sum(hab_mask)*(pixelWidth/1000)^2),
# nSites=dim(Xarray)[3],site = site)
#
# # add z and zeros vector data for latent inclusion indicator
# data$z = c(rep(1,constants$n0),rep(NA,constants$M - constants$n0))
# data$zeros = c(rep(NA,constants$n0),rep(0,constants$M - constants$n0))
#
# # add hab_mask,OK for habitat check, and proportion of available habitat
# data$hab_mask = hab_mask
# data$OK = rep(1,constants$M)
# data$prop.habitat = local_list$prop_habitat
#
# # define all initial values
# inits = list(sigma = runif(1, 250, 350), s = rescale_list$s.st,psi=runif(1,0.2,0.3),
# p0 = runif(constants$nSites, 0.05, 0.15),
# z=c(rep(NA,constants$n0),rep(0,constants$M-constants$n0)),
# pOK=data$OK)
#
# # parameters to monitor
# params = c("sigma","psi","p0","N","D","s","z")
#
# # get model
# scr_model = get_classic(dim_y = 2, enc_dist = "binomial",sex_sigma = FALSE,
# hab_mask=TRUE,trapsClustered = TRUE)
#
# # show lines of model to help with editing
# print_model(scr_model)
#
# # create code to inject localization lines
# add_model = nimble::nimbleCode({
# psim[i] <- (1 - (1 - psi)^prop.habitat[i])
# s[i,1] ~ dunif(xy_bounds[i,1], xy_bounds[i,2])
# s[i,2] ~ dunif(xy_bounds[i,3], xy_bounds[i,4])
# dist[i, 1:Jind[i]] <- sqrt((s[i,1] - X[i,1:Jind[i],1])^2 + (s[i, 2] - X[i,1:Jind[i], 2])^2)
# p[i,1:Jind[i]] <- p0[site[i]] * exp(-dist[i, 1:Jind[i]]^2/(2 * sigma.pixel^2))
# for (i in 1:n0) {
# for (j in 1:Jind[i]) {
# y[i, j] ~ dbin(p[i, j], K)
# }
# }
# for (i in (n0 + 1):M) {
# zeros[i] ~ dbern((1 - prod(1 - p[i, 1:Jind[i]])^K) * z[i])
# }
# })
#
# # edit model (a straight 1-1 line replacement here)
# local_model = customize_model(model = scr_model,append_code = add_model,
# remove_line = c(10:12,15:16,18:25),
# append_line = c(10:12,15:16,18:25))
#
# # run model
# library(tictoc)
# tic() # track time elapsed
# out = run_classic(model = local_model, data=data, constants=constants,
# inits=inits, params = params, niter = 10000, nburnin=1000,
# thin=1, nchains=2, parallel=TRUE, RNGseed = 500)
# toc()
# #> 237.82 sec elapsed
#
# # summarize MCMC output
# nimSummary(out, exclude = c("s","z"))
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 8.754 0.823 7.314 8.694 10.527 1 361.800 1.004
# #> N 424.939 39.928 355.000 422.000 511.000 1 361.800 1.004
# #> p0[1] 0.167 0.029 0.116 0.165 0.230 1 476.028 1.010
# #> p0[2] 0.176 0.030 0.126 0.174 0.242 1 514.860 1.013
# #> psi 0.540 0.053 0.447 0.537 0.650 1 348.219 1.004
# #> sigma 276.489 16.936 244.493 276.152 310.937 1 328.285 1.010
#
# # plot posterior abundance with line for simulated abundance
# samples = do.call(rbind, out)
# par(mfrow=c(1,1))
# hist(samples[,which(dimnames(out[[1]])[[2]]=="N")], xlab = "Abundance",
# xlim = c(0,900), main="")
# abline(v=Nsim, col="red") # add line for simulated abundance
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # make realized density plot (must trace "s" and "z" above)
# r = realized_density(samples=out, grid=local_list$grid, ext = local_list$ext,
# crs_=mycrs, site=constants$site, hab_mask=hab_mask)
#
# # load needed packages for multiplot
# library(viridis)
# library(grid)
# library(cowplot)
# library(ggpubr)
# library(rasterVis)
#
# # plot raster from site 1
# p1<-gplot(r[[1]]) + geom_raster(aes(fill = value)) +
# scale_fill_viridis(na.value = NA, name="Density",
# limits=c(0,0.3),breaks=seq(0,0.3,by=0.1)) +
# xlab("") + ylab("") + theme_classic() +
# scale_x_continuous(expand=c(0, 0)) +
# scale_y_continuous(expand=c(0, 0)) +
# theme(axis.text = element_text(size=18))
#
# # plot raster from site 2
# p2<-gplot(r[[2]]) + geom_raster(aes(fill = value)) +
# scale_fill_viridis(na.value = NA, name="Density",
# limits=c(0,0.3),breaks=seq(0,0.3,by=0.1)) +
# xlab("") + ylab("") + theme_classic() +
# scale_x_continuous(expand=c(0, 0)) +
# scale_y_continuous(expand=c(0, 0)) +
# theme(axis.text = element_text(size=18))
#
# # arrange the two plots in a single row
# prow <- plot_grid(p1 + theme(legend.position="none"),
# p2 + theme(legend.position="none"),
# align = 'vh',
# labels = NULL,
# hjust = -1,
# nrow = 1
# )
#
# # extract the legend from one of the plots
# legend_t <- get_legend(p1 + theme(legend.position = "top",
# legend.direction = "horizontal",
# legend.text = element_text(size=14),
# legend.title = element_text(size=16)))
#
# # add the legend above the row we made earlier. Give it 20% of the height
# # of one plot (via rel_heights).
# pcomb <- plot_grid(legend_t, prow, ncol = 1, rel_heights = c(.2, 1))
#
# # add x and y axis labels
# pcomb <-annotate_figure(pcomb, bottom = textGrob("Easting",
# gp=gpar(fontsize=18), vjust = -1, hjust = 0),
# left = textGrob("Northing", rot=90, gp=gpar(fontsize=18),
# vjust = 1, hjust = 0.5))
# pcomb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.