## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
# load 'localSCR' package
library(localSCR)
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate a single trap array with random positional noise
# x <- seq(-800, 800, length.out = 5)
# y <- seq(-800, 800, length.out = 5)
# traps <- as.matrix(expand.grid(x = x, y = y))
# set.seed(200)
# traps <- traps + runif(prod(dim(traps)),-20,20)
#
# mysigma = 300 # simulate sigma of 300 m
# mycrs = 32608 # EPSG for WGS 84 / UTM zone 8N
#
# # create state-space
# Grid = grid_classic(X = traps, crs_ = mycrs, buff = 3*mysigma, res = 100)
#
# # make ggplot of grid and trap locations
# library(ggplot2)
# ggplot() + geom_point(data=as.data.frame(Grid$grid),aes(x=x,y=y),
# color="grey60", size=1.25) +
# geom_point(data=as.data.frame(traps),aes(x=x,y=y),color="blue",size=2) +
# theme_classic() + ylab("Northing") + xlab("Easting") +
# scale_x_continuous(expand=c(-0.1, 0.1)) +
# scale_y_continuous(expand=c(-0.1, 0.1)) +
# theme(axis.text = element_text(size=12),axis.title = element_text(size=16))
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate SCR data
# data3d = sim_classic(X = traps, ext = Grid$ext, crs_ = mycrs,
# sigma_ = mysigma, prop_sex = 1,N = 200, K = 4,
# base_encounter = 0.10, enc_dist = "poisson",
# hab_mask = FALSE, setSeed = 100)
#
# # inspect simulated data
# str(data3d)
# #> List of 3
# #> $ y : int [1:200, 1:25, 1:4] 0 0 0 0 0 0 0 0 0 0 ...
# #> $ sex: int [1:200] 1 1 1 1 1 1 1 1 1 1 ...
# #> $ s : num [1:200, 1:2] -662 -834 177 -1526 -110 ...
# #> ..- attr(*, "dimnames")=List of 2
# #> .. ..$ : NULL
# #> .. ..$ : chr [1:2] "sx" "sy"
#
# # We sum over traps and occasions to produce a 2-dimensional spatial count data set
# n = apply(data3d$y, c(2,3), sum)
#
# # inspect n[j,k]
# str(n)
# #> int [1:25, 1:4] 0 3 2 0 1 1 1 1 1 1 ...
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate a single trap array with random positional noisee
# x <- seq(-800, 800, length.out = 5)
# y <- seq(-800, 800, length.out = 5)
# traps <- as.matrix(expand.grid(x = x, y = y))
# set.seed(200)
# traps <- traps + runif(prod(dim(traps)),-20,20) # add some random noise to locations
#
# mysigma = 300 # simulate a single scaling parameter
# mycrs = 32608 # EPSG for WGS 84 / UTM zone 8N
# pixelWidth = 100 # store pixelWidth or grid resolution
#
# # create state-space grid and extent
# Grid = grid_classic(X = traps, crs_ = mycrs, buff = 3*max(mysigma), res = pixelWidth)
#
# # create polygon for mask
# library(sf)
# poly = st_sfc(st_polygon(x=list(matrix(c(-1765,-1765,1730,-1650,1600,1650,0,1350,-800,1700,
# -1850,1000,-1765,-1765),ncol=2, byrow=TRUE))), crs = mycrs)
#
# # create habitat mask
# hab_mask = mask_polygon(poly = poly, grid = Grid$grid, crs_ = mycrs,
# prev_mask = NULL)
#
# # simulate data for uniform state-space and habitat mask
# data3d = sim_classic(X = traps, ext = Grid$ext, crs_ = mycrs,
# sigma_ = mysigma, prop_sex = 1,N = 200, K = 4,
# base_encounter = 0.3, enc_dist = "poisson",
# hab_mask = hab_mask, setSeed = 100)
#
#
# # total augmented population size
# m = 500
#
# # get initial activity center starting values
# s.st3d = initialize_classic(y=NULL, M=m, X=traps, ext = Grid$ext,
# hab_mask = hab_mask, all_random=TRUE)
#
# # make ggplot
# ggplot() + geom_point(data=as.data.frame(Grid$grid),aes(x=x,y=y),color="grey60",
# size=1.25) +
# geom_point(data=as.data.frame(traps),aes(x=x,y=y),color="blue",size=3) +
# geom_point(data=as.data.frame(s.st3d),aes(x=V1,y=V2),color = "orangered",size=2.5,alpha=0.5) +
# geom_sf(data=poly, fill = NA) + coord_sf(datum=st_crs(mycrs)) +
# theme_classic() + ylab("Northing") + xlab("Easting") +
# scale_x_continuous(expand=c(0.025, 0.025)) +
# scale_y_continuous(expand=c(0.025, 0.025)) +
# theme(axis.text = element_text(size=12),axis.title = element_text(size=16))
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # rescale inputs
# rescale_list = rescale_classic(X = traps, ext = Grid$ext, s.st = s.st3d,
# hab_mask = hab_mask)
#
# # store rescaled extent
# ext = rescale_list$ext
#
# # Prepare data by summing over traps and occasions and add to list
# data = list(n = apply(data3d$y, c(2,3), sum))
#
# # add rescaled traps
# data$X = rescale_list$X
#
# # prepare constants (note get density in activity center/100 m2 rather than activity centers/m2)
# constants = list(m = m,J=dim(data3d$y)[2], K=dim(data3d$y)[3],
# x_lower = ext[1], x_upper = ext[2], y_lower = ext[3], y_upper = ext[4],
# lam0_upper = 1,sigma_upper = 1000,
# A = (sum(hab_mask)*(pixelWidth/100)^2),pixelWidth=pixelWidth)
#
# # add hab_mask and OK for habitat check
# data$hab_mask = hab_mask
# data$OKu = rep(1,constants$m)
#
# # get initial activity center starting values
# s.st = rescale_list$s.st
#
# # define all initial values
# inits = list(sigma = runif(1, 250, 350), su = s.st,psiu=runif(1,0.4,0.6),
# lam0 = runif(1, 0.05, 0.15),pOKu=data$OKu,zu=rbinom(constants$m,1,0.5))
#
# # parameters to monitor
# params = c("sigma","psiu","lam0","N","D","su","zu")
#
# # get spatial count model
# sc_model = get_unmarked(occ_specific = FALSE,
# hab_mask=TRUE,trapsClustered=FALSE)
#
# # run model (note we set s_alias to "su" for spatial count model)
# library(tictoc)
# tic() # track time elapsed
# out = run_classic(model = sc_model, data=data, constants=constants,
# inits=inits, params = params,niter = 10000, nburnin=1000, thin=1, nchains=2, parallel=TRUE,
# RNGseed = 500, s_alias="su")
# toc()
# #> 511.62 sec elapsed
#
# # summarize output
# samples = do.call(rbind, out)
#
# par(mfrow=c(1,1))
# hist(samples[,which(dimnames(out[[1]])[[2]]=="N")], xlab = "Abundance", xlim = c(0,500), main="")
# abline(v=200, col="red") # add line for simulated abundance
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # summarize MCMC samples (exclude parameters and don't plot)
# nimSummary(out, exclude = c("su","zu"), trace=FALSE)
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 0.234 0.121 0.040 0.221 0.453 1 33.817 1.121
# #> N 250.204 129.023 43.000 237.000 485.000 1 33.817 1.121
# #> lam0 0.385 0.238 0.065 0.357 0.906 1 68.708 1.020
# #> psiu 0.500 0.258 0.086 0.475 0.968 1 33.594 1.119
# #> sigma 344.133 202.596 146.564 270.782 932.274 1 31.582 1.282
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # get from Github and load
# #install_github("austinnam/modeltools",force=TRUE)
# library(modeltools)
#
# # get 'alpha' and 'beta' parameters of Gamma distribution
# gparam = estGammaParam(mu = mysigma, sigma = 30)
#
# # view prior distribution for sigma (scaling parameter)
# hist(rgamma(100000,shape=gparam$alpha,rate=1/gparam$beta),main="",xlab="Gamma prior")
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # define new code to replace line 3 in 'sc_model'
# library(nimble)
# new_prior = nimbleCode({
# sigma ~ dgamma(alpha, 1/beta) # note that dgamma takes rate (1/beta)
# })
#
# # delete old prior on line 3 and replace with new prior
# sc_model_inf = customize_model(model = sc_model, append_code = new_prior,
# append_line=3,remove_line=3)
#
# # inspect model (not run)
# # sc_model_inf
#
# # add 'alpha' and 'beta' to list of constants
# constants$alpha = gparam$alpha
# constants$beta = gparam$beta
#
# # run model (note we set s_alias to "su" for spatial count model)
# library(tictoc)
# tic() # track time elapsed
# out = run_classic(model = sc_model_inf, data=data, constants=constants,
# inits=inits, params = params,niter = 10000, nburnin=1000, thin=1, nchains=2, parallel=TRUE,
# RNGseed = 500,s_alias="su")
# toc()
# #> 836.56 sec elapsed
#
# # summarize output
# samples = do.call(rbind, out)
# par(mfrow=c(1,1))
# hist(samples[,which(dimnames(out[[1]])[[2]]=="N")], xlab = "Abundance", xlim = c(0,500), main="")
# abline(v=200, col="red") # add line for simulated abundance
## ---- fig.show='hide',eval=FALSE,fig.width = 8,fig.height=14------------------
# # define new code to replace line 3 in 'sc_model'
# new_prior = nimbleCode({
# lam0 ~ dgamma(alpha_lam0, 1/beta_lam0) # note that dgamma takes rate (1/beta)
# })
#
# # delete old prior on line 3 and replace with new prior
# sc_model_inf2 = customize_model(model = sc_model_inf, append_code = new_prior,
# append_line=2,remove_line=2)
#
# # inspect model (not run)
# # sc_model_inf2
#
# # get 'alpha' and 'beta' parameters of Gamma distribution
# lam0_param = estGammaParam(mu = 0.30, sigma = 0.03)
#
# # add 'alpha' and 'beta' to list of constants
# constants$alpha_lam0 = lam0_param$alpha
# constants$beta_lam0 = lam0_param$beta
#
# # run model (note we set s_alias to "su" for spatial count model)
# library(tictoc)
# tic() # track time elapsed
# out = run_classic(model = sc_model_inf2, data=data, constants=constants,
# inits=inits, params = params,niter = 10000, nburnin=1000, thin=1, nchains=2, parallel=TRUE,
# RNGseed = 500,s_alias="su")
# toc()
# #> 1193.95 sec elapsed
#
# # summarize output (exclude "su" and "zu" from table and make posterior/trace plots)
# nimSummary(out, exclude = c("su","zu"), trace=TRUE, plot_all=FALSE)
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 0.223 0.053 0.137 0.219 0.343 1 275.831 1.001
# #> N 238.946 56.449 147.000 234.000 367.000 1 275.831 1.001
# #> lam0 0.298 0.029 0.244 0.297 0.358 1 1374.996 1.000
# #> psi 0.478 0.114 0.288 0.468 0.737 1 287.766 1.001
# #> sigma 287.307 28.393 234.682 286.116 346.612 1 301.998 1.013
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # make realized density plot (need to specify s_alias and z_alias)
# r = realized_density(samples = out, grid = Grid$grid, crs_ = mycrs, site = NULL,
# hab_mask = hab_mask, s_alias = "su", z_alias = "zu")
#
# # load virdiis color palette and raster libraries
# library(viridis)
# library(raster)
#
# # make simple raster plot
# plot(r, col=viridis(100),
# main=expression("Realized density (activity centers/100 m"^2*")"),
# ylab="Northing",xlab="Easting")
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # simulate a single trap array with random positional noise
# x <- seq(-800, 800, length.out = 5)
# y <- seq(-800, 800, length.out = 5)
# traps <- as.matrix(expand.grid(x = x, y = y))
# set.seed(200)
# traps <- traps + runif(prod(dim(traps)),-20,20)
#
# mysigma = 300 # simulate single scaling parameter
# mycrs = 32608 # EPSG for WGS 84 / UTM zone 8N
# pixelWidth = 100 # store pixelWidth
#
# # create an array of traps, as an approach where individuals will only be detected
# # at one of the trap arrays (e.g., Furnas et al. 2018)
# Xarray = array(NA, dim=c(nrow(traps),2,2))
# Xarray[,,1]=traps
# Xarray[,,2]=traps+4000 # shift trapping grid to new locations
#
# # create grid and extent for 3D trap array
# GridX = grid_classic(X = Xarray, crs_ = mycrs, buff = 3*max(mysigma), res = 100)
#
# # create polygon to use as a mask
# library(sf)
# poly = st_sfc(st_polygon(x=list(matrix(c(-1660,-1900,5730,-1050,5470,
# 5650,0,6050,-1800,5700,-1660,-1900),ncol=2, byrow=TRUE))), crs = mycrs)
#
# # make ggplot
# ggplot() + geom_point(data=as.data.frame(GridX$grid[,,1]),aes(x=V1,y=V2),
# color="grey60",size=1.25) +
# geom_point(data=as.data.frame(Xarray[,,1]),aes(x=V1,y=V2),color="blue",size=2) +
# geom_point(data=as.data.frame(GridX$grid[,,2]),aes(x=V1,y=V2),color="grey60",
# size=1.25) +
# geom_point(data=as.data.frame(Xarray[,,2]),aes(x=V1,y=V2),color="blue",size=2) +
# geom_sf(data=poly, fill = NA) + coord_sf(datum=st_crs(mycrs)) +
# theme_classic() + ylab("Northing") + xlab("Easting") +
# scale_x_continuous(limits=c(-2000,6000)) +
# scale_y_continuous(limits=c(-2000,6000)) +
# theme(axis.text = element_text(size=12),axis.title = element_text(size=16))
## ---- fig.show='hide',eval=FALSE,fig.width = 8,fig.height=14------------------
# # get 3D habitat mask array for 3D grid
# hab_mask = mask_polygon(poly = poly, grid = GridX$grid, crs_ = mycrs, prev_mask = NULL)
#
# # simulate data for uniform state-space and habitat mask (N is simulated abundance)
# data4d = sim_classic(X = Xarray, ext = GridX$ext, crs_ = mycrs,
# sigma_ = mysigma,prop_sex = 1,N = 200, K = 4,
# base_encounter = 0.3, enc_dist = "poisson",
# hab_mask = hab_mask, setSeed = 100)
#
# # organize by site and bind into an array
# library(abind) # load abind package
# y = abind(data4d$y[which(data4d$site==1),,],
# data4d$y[which(data4d$site==2),,], along = 4)
#
# # total augmented population size
# m = 400
#
# # augment site identifier
# site = c(rep(1,200),rep(2,200))
#
# # get initial activity center starting values
# s.st4d = initialize_classic(y=NULL, M=m, X=Xarray, ext = GridX$ext,
# site = site, hab_mask = hab_mask,all_random = TRUE)
#
# # rescale inputs
# rescale_list = rescale_classic(X = Xarray, ext = GridX$ext, s.st = s.st4d,
# site = site, hab_mask = hab_mask)
#
# # store rescaled extent and convert to matrix
# ext = do.call(rbind, lapply(rescale_list$ext, as.vector))
#
# # Prepare data by summing over traps and occasions and add to list
# data = list(n = apply(y, c(2,3,4), sum),x_lower = ext[,1],
# x_upper = ext[,2],y_lower = ext[,3]
# ,y_upper = ext[,4],X = rescale_list$X)
#
# # add hab_mask, proportion of available habitat, and OK for habitat check
# data$hab_mask = hab_mask
# # need to adjust proportion of habitat available
# data$prop.habitat=apply(hab_mask,3,mean)
# data$OK = rep(1,constants$m)
#
# # prepare constants (note get density in activity center/100 m2)
# constants = list(m = m,J=dim(data4d$y)[2],
# K=dim(data4d$y)[3], sigma_upper = 1000, A = (sum(hab_mask)*(pixelWidth/100)^2),
# pixelWidth=pixelWidth,nSites=dim(Xarray)[3],site = site)
#
# # add indexes for sites and individuals
# constants$site_indexL = seq(1,m,200)
# constants$site_indexU = seq(200,m,200)
#
# # priors for sigma: 'alpha' and 'beta'
# constants$alpha = gparam$alpha
# constants$beta = gparam$beta
#
# # priors for lam0: 'alpha' and 'beta'
# constants$alpha_lam0 = lam0_param$alpha
# constants$beta_lam0 = lam0_param$beta
#
# # get initial activity center starting values
# s.st = rescale_list$s.st
#
# # define all initial values
# inits = list(sigma = runif(1, 250, 350),su = s.st,psiu=runif(1,0.4,0.6),
# lam0 = runif(1, 0.1, 0.3),pOKu=data$OKu,zu=rbinom(constants$m,1,0.5))
#
# # parameters to monitor
# params = c("sigma","psiu","lam0","N","D","su","zu")
#
# # get model
# sc_model = get_unmarked(occ_specific = FALSE, hab_mask = TRUE,
# trapsClustered = TRUE)
#
# # model code to replace old code
# add_model = nimbleCode({
# lam0[g] ~ dgamma(alpha_lam0,1/beta_lam0)
# sigma ~ dgamma(alpha, 1/beta)
# })
#
# # now create new model
# sc_model_inf = customize_model(sc_model, add_model, append_line = c(3,4),
# remove_line = c(3,5))
#
# # inspect model (not run)
# # sc_model_inf
#
# # run model (need to set s_alias)
# library(tictoc)
# tic() # track time elapsed
# out = run_classic(model = sc_model_inf, data=data, constants=constants,
# inits=inits, params = params,niter = 10000, nburnin=1000, thin=1, nchains=2,
# parallel=TRUE, RNGseed = 500, s_alias = "su")
# toc()
# #> 968.93 sec elapsed
#
# # summary table of MCMC output (exclude "su" and "zu" parameters)
# nimSummary(out, exclude = c("su","zu"))
# #> post.mean post.sd q2.5 q50 q97.5 f0 n.eff Rhat
# #> D 0.102 0.022 0.066 0.099 0.152 1 270.831 1.008
# #> N 228.569 49.067 149.000 223.000 342.000 1 270.831 1.008
# #> lam0[1] 0.295 0.027 0.247 0.294 0.352 1 3595.823 1.002
# #> lam0[2] 0.299 0.027 0.249 0.298 0.355 1 2805.852 1.001
# #> psiu 0.581 0.125 0.376 0.569 0.865 1 305.124 1.007
# #> sigma 295.497 27.822 243.024 295.005 352.028 1 319.216 1.002
## ---- fig.show='hide',eval=FALSE----------------------------------------------
# # generate realized density surface (note setting z_alias and s_alias)
# r = realized_density(samples=out, grid=GridX$grid, ext = GridX$ext,
# crs_=mycrs,site=constants$site, hab_mask=hab_mask,
# z_alias = "zu", s_alias = "su")
#
# # load needed packages for multiplot
# library(viridis)
# library(grid)
# library(cowplot)
# library(ggpubr)
# library(rasterVis)
#
# # plot raster from site 1
# p1<-gplot(r[[1]]) + geom_raster(aes(fill = value)) +
# scale_fill_viridis(na.value = NA, name="Density",
# limits=c(0,0.3),breaks=seq(0,0.3,by=0.1)) +
# xlab("") + ylab("") + theme_classic() +
# scale_x_continuous(expand=c(0, 0)) +
# scale_y_continuous(expand=c(0, 0)) +
# theme(axis.text = element_text(size=18))
#
# # plot raster from site 2
# p2<-gplot(r[[2]]) + geom_raster(aes(fill = value)) +
# scale_fill_viridis(na.value = NA, name="Density",
# limits=c(0,0.3),breaks=seq(0,0.3,by=0.1)) +
# xlab("") + ylab("") + theme_classic() +
# scale_x_continuous(expand=c(0, 0)) +
# scale_y_continuous(expand=c(0, 0)) +
# theme(axis.text = element_text(size=18))
#
# # arrange the two plots in a single row
# prow <- plot_grid(p1 + theme(legend.position="none"),
# p2 + theme(legend.position="none"),
# align = 'vh',
# labels = NULL,
# hjust = -1,
# nrow = 1
# )
#
# # extract the legend from one of the plots
# legend_t <- get_legend(p1 + theme(legend.position = "top",
# legend.direction = "horizontal",
# legend.text = element_text(size=14),
# legend.title = element_text(size=16)))
#
# # add the legend above the row we made earlier. Give it 20% of the height
# # of one plot (via rel_heights).
# pcomb <- plot_grid(legend_t, prow, ncol = 1, rel_heights = c(.2, 1))
#
# # add x and y axis labels
# pcomb <-annotate_figure(pcomb, bottom = textGrob("Easting",
# gp=gpar(fontsize=18), vjust = -1, hjust = 0),
# left = textGrob("Northing", rot=90, gp=gpar(fontsize=18),
# vjust = 1, hjust = 0.5))
# pcomb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.