View source: R/GEE_Functions.R
geep | R Documentation |
Compute the power for testing a main effect of a treatment in a 2-arm parallel groups design via a 3-level generalized estimating equation with binary outcome data, given sample size (N, number of clusters).
geep(p0, p1, r, rho, n_e = 1, n_s = 1, pi_c = 0.5, alpha = 0.05, N)
p0 |
A numeric value for |
p1 |
A numeric value for |
r |
A numeric value for |
rho |
A numeric value for |
n_e |
A numeric vector for |
n_s |
A numeric vector for |
pi_c |
A numeric value for |
alpha |
A numeric value for |
N |
A numeric vector for the total number of clusters in the sample. |
=============================================================================
This function is useful for examining a range of scenarios. Using vectors with legnth > 1 for parameters such as n_s, n_e, and N will yield power estimates for multiple scenarios in the data frame returned.
A data frame.
Teerenstra, S., Lu, B., Preisser, J. S., van Achterberg, T., & Borm, G. F. (2010). Sample size considerations for GEE analyses of three-level cluster randomized trials. Biometrics, 66(4), 1230-1237. doi:10.1111/j.1541-0420.2009.01374.x
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.