generalized_ESD: Detect outliers using the generalized Extreme Studentized...

Description Usage Arguments Details Value

View source: R/generalized_ESD.R

Description

Identify outliers within a distribution of numeric values using Rosner's generalized Extreme Studentized Deviate (ESD) test. Unlike the Grubbs or Tietjen-Moore tests, the generalized ESD test does not require the number of outliers to be prespecified.

Usage

1
2
generalized_ESD(x, max_outliers = 5, alpha = 0.05,
  return_statistics = T)

Arguments

x

distribution to find outliers in

max_outliers

the prespecified maximum number of outliers; defaults to 5

alpha

type I error associated with the hypothesis test; defaults to 0.05

return_statistics

optionally return the test statistics associated with the top max_outliers outliers

Details

Full details are provided in:

Rosner, Bernard (May 1983), Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), pp. 165-172.

Value

a vector of the same length as the input, with outliers masked (or, if return_scores is true, the test statistics of the top max_outliers observations)


skinnider/modern documentation built on Feb. 20, 2020, 1:52 p.m.