knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%",
  fig.width = 6,
  fig.asp = 0.618,
  dpi = 300
)

spiro

Project Status: Active – The project has reached a stable, usable state and is being actively developed. CRAN status DOI R-CMD-check codecov Status at rOpenSci Software Peer Review

Overview

This R package offers a fast, standardized and reproducible workflow for data from cardiopulmonary exercise testing. It offers tools for data import, processing, summary and visualization.

Background

Measuring gas exchange during physical exercise is a common procedure in sports science and medicine. It allows to assess the functional limit of the cardiovascular system, evaluate the success of training interventions, and diagnose cardio-respiratory diseases. The measuring devices of cardiopulmonary exercise testing --- so-called metabolic carts --- output their data in different formats. Moreover, measured breath-by-breath data is noisy and requires post-processing. This package standardizes the import and processing of raw data from different metabolic carts.

Installation

Install spiro from CRAN:

``` {r install, eval = FALSE} install.packages("spiro")

Install the current development version of `spiro` from GitHub:

``` {r install-dev, eval = FALSE}
if (!require(remotes)) install.packages("remotes")
remotes::install_github("ropensci/spiro")

Usage

Main functions:

Further functionality:

Metabolic Carts

The following metabolic carts are currently supported by spiro:

Support for further metabolic carts is planned for future releases.

Example

library(spiro)

# get data path for example
file <- spiro_example("zan_gxt")

# import and process the raw data
gxt_data <- spiro(file)

# summary of parameters by load step
spiro_summary(gxt_data)

# maximum values
spiro_max(gxt_data)

# Wassermann 9-Panel Plot
spiro_plot(gxt_data)

Citation

citation("spiro")

Related Work

The whippr package offers a different approach to working with data from cardiopulmonary exercise testing. It additionally offers functions for analyzing VO2 kinetics.

Acknowledgment

The following persons contributed to this package by providing raw data files, reviewing code and/or suggesting features: Daniel Appelhans, Michael Beaven, James Hunter, Virgile Lecoultre, Sebastian Mühlenhoff, Manuel Ramon, Anton Schiffer, Yannick Schwarz, Adrian Swoboda, Andreas Wagner.

Contributing

If you consider contributing to this package, read the CONTRIBUTING.md. Please note that this package is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.



smnnlt/spiro documentation built on Feb. 23, 2025, 3:07 p.m.