Description Usage Arguments Value
View source: R/BridgeChangeSim.r
Simulation code for univariate response change-point model with Bridge prior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | BridgeChangeSim(
ntime = 500,
predictor = 100,
rho = 0,
time.series = FALSE,
standardize = TRUE,
sign.change.tune = 2,
sigma1 = 1,
sigma2 = 2,
train.ratio = 0.5,
fitted.mse = TRUE,
constant.p = 0.1,
varying.p = 0.2,
break.point = 0.5,
positive.jump = FALSE,
n.break = 1,
intercept = FALSE,
positive.jump.tune = 1,
mcmc = 100,
burn = 100,
verbose = 100,
thin = 1,
N = 1,
known.alpha = FALSE,
dgp.only = FALSE
)
|
ntime |
Length of time series |
predictor |
Number of predictor |
rho |
correlation parameter 0 = no correlation. |
time.series |
TRUE if dgp is generated from autocorrelated series. rho is used as an autocorrelation coefficient. |
sign.change.tune |
tuning parameter for the size of parameter sign changes |
sigma1 |
sigma 1 |
sigma2 |
sigma 2 |
train.ratio |
The proportion of training data. (0, 1). |
fitted.mse |
If TRUE and n.break == 0, compute the MSE of fitted values against true responses. If FALSE, do the cross-validation test using training data. |
constant.p |
Proportion of constant parameters |
varying.p |
Proportion of time-varying parameters |
break.point |
Timing of a break between 0 and 1. |
mcmc |
=100 |
burn |
=100 |
verbose |
=100 Verbose |
thin |
Thinning |
N |
Number of cross-sectional units. If |
dgp.only |
If TRUE, only data are generated and estimation steps are skipped. |
corr.tune |
tuning parameter for sx |
output
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.