This report was automaticly generated by madis. R version is r paste(base:::version$version.string)
.
library(shiny) options(digits=4,knitr.table.format='markdown') library(reshape2);library(plotly);library(knitr);library(zoo);library(xts);library(rpart);library(partykit);library(showtext);library(ggplot2);library(rms);library(Hmisc);library(mgcv);library(stringi);library(fBasics);library(vcdExtra);library(ROCR);library(survival);library(pander);library(ggfortify);library(madis);library(prophet);library(MASS) opts_chunk$set(echo=F,message=F,warning=F,results='asis',comment=NA,fig.showtext=TRUE,fig.width=7,fig.height=5,knitr.table.format='markdown')
load('LstMadis.RData') reportFormat<-read.csv('formatReport.csv',stringsAsFactors = F)
## 描述性结果部分 LstMadis$desc->descParams if(!all(is.na(descParams$xvars))){ cat('\n') cat('# Descriptive results of each variable selected') cat('\n') # cat('描述性分析结果对所选择的变量进行逐一分析,定量变量视其分布是否服从正态分布,以"均值±标准差"或"中位数[25%,75%]"进行呈现,且给出分布的直方图。定性变量则给出频数表,且以条图表达。图形均以R语言ggplot2包绘制。') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(descParams)){ cat('\n') cat(paste0('### ',descParams$xvars[i],' ')) cat('\n') #print(pander(resDesc[[i]]$resTabDesc)) uniVar(data=LstMadis$Data[[descParams$dataName[i]]],xvars=descParams$xvars[i],Digits=descParams$Digits[i])->res cat(pander::pander(res$resDesc,split.table=Inf)) cat('\n') # if(reportFormat$format=='HTML'){ # ggplotly(res$graphDesc) # } else { plot(res$graphDesc) # } cat('\n') } } ## 单因素分析结果部分 LstMadis$hTest->hTestParams if(!all(is.na(hTestParams$xvars))){ cat('\n') cat('# hypothesis test result') cat('\n') cat('\n') # cat('单因素分析对选择的每一个因变量和所有自变量进行逐一分析,分析方法根据变量的类型和分布自动选择,统计方法有:t检验,秩和检验,方差分析,相关性检验,卡方检验等。同时给出图形结果,图形采用R语言ggplot2包进行绘制。') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(hTestParams)){ cat('\n') cat(paste0('### ',hTestParams$xvars[i],' & ',hTestParams$yvars[i],' ')) cat('\n') #print(pander(resDesc[[i]]$resTabDesc)) hTest(data=LstMadis$Data[[hTestParams$dataName[i]]],xvars=hTestParams$xvars[i],yvars=hTestParams$yvars[i],alter=hTestParams$alter[i],paired=hTestParams$paired[i],confLevel=hTestParams$confLevel[i],nullHyp=hTestParams$nullHyp[i],normalSampleSize =hTestParams$normalSampleSize[i] )->res cat(pander::pander(res$hTestRes,split.table=Inf)) cat('\n') plot(res$hTestGraph) cat('\n') } } ## 线性模型结果部分 LstMadis$myGlm->myGlmParms if(!all(is.na(myGlmParms$data))){ cat('\n') cat('# GLM results') cat('\n') cat('\n') # cat('广义线性模型的结果采用R中glm函数进行分析,结果提供全模型以及利用AIC进行变量筛选的逐步回归结果,同时提供模型的诊断图形结果。') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myGlmParms)){ cat('\n') cat(paste0('### model ',i,' results ')) cat('\n') glmS(Formula=myGlmParms$Formula[i], data=LstMadis$Data[[myGlmParms$data[i]]], weightsVar=myGlmParms$weightsVar[i], subset=myGlmParms$subset[i], Family=myGlmParms$Family[i], lower=myGlmParms$lower[i])->res cat('\n') cat(paste0('#### Full model ',i,' results ')) if(myGlmParms$Family[i]=='binomial'){ cat('\n') cat('\n') summary(res$glmResFull)->fitSum fitSum$coefficients<-cbind(fitSum$coefficients,OR=exp(fitSum$coefficients[,1]),exp(confint(res$glmResFull))) # cat(pander(exp(confint(res$glmResFull)))) cat(pander::pander(fitSum,split.table=Inf)) cat('\n') } else { cat('\n') cat(pander::pander(summary(res$glmResFull),split.table=Inf)) cat('\n') } cat('\n') cat(paste0('#### Full model ',i,' diagnostic results ')) cat('\n') print(autoplot(res$glmResFull)) cat('\n') cat('\n') if(myGlmParms$Family[i]=='binomial'){ res$glmResFull->fit.tmp predict(fit.tmp,type='link')->pred.fit t.scores<-prediction(pred.fit,fit.tmp[['y']]) cost.perf = performance(t.scores, "cost") t.scores@cutoffs[[1]][which.min(cost.perf@y.values[[1]])]->cutoffVal perf1<-performance(t.scores,'tpr','fpr') perf2<-performance(t.scores,'auc') plot(perf1,main='ROC Curve for Regression Full Model') abline(c(0,0),c(1,1)) text(0.8,0.2,paste('auc=',round(unlist(perf2@y.values),3),sep='')) text(0.8,0.1,paste('cutoff=',round(cutoffVal,3),sep='')) cat('\n') #plot(res$nomogramFull) cat('\n') } cat('\n') cat(paste0('#### Step model ',i,' results ')) # cat('\n') # cat(pander(summary(res$glmResStep))) # cat('\n') cat('\n') if(myGlmParms$Family[i]=='binomial'){ cat('\n') # cat(paste0('#### 第',i,'个模型的置信区间结果:')) cat('\n') summary(res$glmResStep)->fitSum fitSum$coefficients<-cbind(fitSum$coefficients,OR=exp(fitSum$coefficients[,1]),exp(confint(res$glmResStep))) # cat(pander(exp(confint(res$glmResFull)))) cat(pander::pander(fitSum,split.table=Inf)) cat('\n') } else { cat('\n') cat(pander::pander(summary(res$glmResStep),split.table=Inf)) cat('\n') } cat('\n') cat('\n') cat(paste0('#### Step model ',i,' diagnostic result ')) cat('\n') print(autoplot(res$glmResStep)) cat('\n') cat('\n') if(myGlmParms$Family[i]=='binomial'){ res$glmResStep->fit.tmp predict(fit.tmp,type='link')->pred.fit t.scores<-prediction(pred.fit,fit.tmp[['y']]) cost.perf = performance(t.scores, "cost") t.scores@cutoffs[[1]][which.min(cost.perf@y.values[[1]])]->cutoffVal perf1<-performance(t.scores,'tpr','fpr') perf2<-performance(t.scores,'auc') plot(perf1,main='ROC Curve for Regression Stepwise Model') abline(c(0,0),c(1,1)) text(0.8,0.2,paste('auc=',round(unlist(perf2@y.values),3),sep='')) text(0.8,0.1,paste('cutoff=',round(cutoffVal,3),sep='')) cat('\n') #plot(res$nomogramStep) cat('\n') } cat('\n') cat('\n') } } ## 决策树模型结果部分 LstMadis$myTree->myTreeParms if(!all(is.na(myTreeParms$data))){ cat('\n') cat('# tree model results ') cat('\n') cat('\n') # cat('决策树模型的结果采用R中rpart函数或ctree函数进行分析') cat('\n') cat('\n') # cat('## results ') cat('\n') for(i in 1:nrow(myTreeParms)){ cat('\n') cat(paste0('### Tree model ',i,' results ')) cat('\n') treeS(Formula=myTreeParms$Formula[i], data=LstMadis$Data[[myTreeParms$data[i]]], subset=myTreeParms$subset[i], treeMethod=myTreeParms$treeMethod[i], Minsplit=myTreeParms$Minsplit[i], Minbucket = myTreeParms$Minbucket[i], Maxdepth=myTreeParms$Maxdepth[i], CP=myTreeParms$CP[i], Mincrit = myTreeParms$Mincrit[i])->res cat('\n') plot(res) cat('\n') cat('\n') } } ## COX模型结果部分 LstMadis$myCox->myCoxParms if(!all(is.na(myCoxParms$data))){ cat('\n') cat('# COXPH results ') cat('\n') # cat('cox模型的结果采用R中coxph函数进行分析,结果提供全模型以及利用AIC进行变量筛选的逐步回归结果。') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myCoxParms)){ cat('\n') cat(paste0('### model ',i,' results ')) cat('\n') coxS(Formula=myCoxParms$Formula[i], data=LstMadis$Data[[myCoxParms$data[i]]], weightsVar=myCoxParms$weightsVar[i], subset=myCoxParms$subset[i], strataVar=myCoxParms$strataVar[i], lower=myCoxParms$lower[i])->res cat('\n') cat(paste0('#### Full model ',i,' results ')) cat('\n') cat(pander::pander(summary(res$coxResFull),split.table=Inf)) cat('\n') cat(paste0('#### Full model ',i,' forest graph ')) cat('\n') cat('\n') cat(pander::pander(cox.zph(res$coxResFull)$table,split.table=Inf)) cat('\n') print(ggcoxzph(cox.zph(res$coxResFull))) cat('\n') print(ggforest(res$coxResFull,LstMadis$Data[[myCoxParms$data[i]]])) cat('\n') cat(paste0('#### Step model ',i,' results')) cat('\n') cat(pander::pander(summary(res$coxResStep),split.table=Inf)) cat('\n') cat(paste0('#### Step model ',i,' forest graph ')) cat('\n') cat('\n') cat(pander::pander(cox.zph(res$coxResStep)$table,split.table=Inf)) cat('\n') print(ggcoxzph(cox.zph(res$coxResStep))) cat('\n') # print(autoplot(survfit(res$coxResStep))) print(ggforest(res$coxResStep,LstMadis$Data[[myCoxParms$data[i]]])) cat('\n') cat('\n') cat(paste0('#### model ',i,' survival curves ')) cat('\n') print(autoplot(res$fitStrata)) cat('\n') } } ## 混合效应模型结果部分 LstMadis$myLme->myLmeParms if(!all(is.na(myLmeParms$data))){ cat('\n') cat('# lme model results') cat('\n') cat('\n') # cat('混合效应模型的结果采用R中nlme包进行分析,结果提供全模型以及利用AIC进行变量筛选的逐步回归结果。') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myLmeParms)){ cat('\n') cat(paste0('### model ',i,' results')) cat('\n') lmeS(formulaFixed=myLmeParms$formulaFixed[i], formulaRandom=myLmeParms$formulaRandom[i], data=LstMadis$Data[[myLmeParms$data[i]]], Method=myLmeParms$Method[i], subset=myLmeParms$subset[i])->res cat('\n') cat(paste0('#### Full model ',i,' results')) cat('\n') cat(pander::pander(res$lmeResFull,split.table=Inf)) cat('\n') cat('\n') cat(paste0('#### Step model ',i,' results')) cat('\n') cat(pander::pander(res$lmeResStep,split.table=Inf)) cat('\n') cat('\n') cat('\n') } } ## 聚类分析结果部分 LstMadis$Kmeans->myKmeansParms if(!all(is.na(myKmeansParms$data))){ cat('\n') cat('# Kmeans results') cat('\n') cat('\n') # cat('聚类分析采用R中kmeans函数进行分析,同时,提供基于vegan包判断最佳的聚类数目。') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myKmeansParms)){ cat('\n') cat(paste0('### Kmeans analyzing ',i,' results ')) cat('\n') Kmeans( data=LstMadis$Data[[myKmeansParms$data[i]]], vars=myKmeansParms$vars[i], infgr=myKmeansParms$infgr[i], supgr=myKmeansParms$supgr[i], Centers=myKmeansParms$Centers[i], Criterion=myKmeansParms$Criterion[i], Iter=myKmeansParms$Iter[i], iterMax=myKmeansParms$iterMax[i], Algorithm=myKmeansParms$Algorithm[i], subset=myKmeansParms$subset[i], clusterName=myKmeansParms$clusterName[i], seed=myKmeansParms$seed[i])->res cat('\n') cat(paste0('#### Kmeans analyzing ',i,' graph results')) cat('\n') plot(res$graphCrit) cat('\n') cat('\n') #cat(paste0('#### 第',i,'聚类分析结果:')) cat('\n') #cat(pander(res$resKmeans)) cat('\n') cat('\n') cat('\n') } } ## 主成分分析结果部分 LstMadis$pca->mypcaParms if(!all(is.na(mypcaParms$data))){ cat('\n') cat('# PCA results') cat('\n') cat('\n') # cat('主成分分析采用R psych包的principal函数进行分析。') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(mypcaParms)){ cat('\n') cat(paste0('### PCA ',i,' results ')) cat('\n') pcaS( data=LstMadis$Data[[mypcaParms$data[i]]], vars=mypcaParms$vars[i], nfcts=mypcaParms$nfcts[i], Rotate=mypcaParms$Rotate[i], Scores=mypcaParms$Scores[i], subset=mypcaParms$subset[i], pcaVarName=mypcaParms$pcaVarName[i])->res cat('\n') cat(paste0('#### PCA ',i,' graph results')) cat('\n') plot(scree(res$dataScree)) cat('\n') cat('\n') cat(paste0('#### PCA ',i,' loadings results')) cat('\n') cat(pander::pander(res$resPCA$loadings[],split.table=Inf)) cat('\n') cat('\n') cat(pander::pander(res$cumVar,split.table=Inf)) cat('\n') } } ## 因子分析结果部分 LstMadis$fa->myfaParms if(!all(is.na(myfaParms$data))){ cat('\n') cat('# FA results') cat('\n') cat('\n') # cat('因子分析采用R psych包的fa函数进行分析。') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myfaParms)){ cat('\n') cat(paste0('### FA ',i,' results')) cat('\n') faS( data=LstMadis$Data[[myfaParms$data[i]]], vars=myfaParms$vars[i], nfcts=myfaParms$nfcts[i], Rotate=myfaParms$Rotate[i], Scores=myfaParms$Scores[i], FM=myfaParms$FM[i], subset=myfaParms$subset[i], faVarName=myfaParms$faVarName[i])->res cat('\n') cat(paste0('#### FA ',i,' graph results ')) cat('\n') plot(scree(res$dataScree)) cat('\n') cat('\n') cat(paste0('#### FA ',i,' loadings results ')) cat('\n') cat(pander::pander(res$resFA$loadings[],split.table=Inf)) cat('\n') cat('\n') cat(pander::pander(res$cumVar,split.table=Inf)) cat('\n') } } ## 主成分分析结果部分 # LstMadis$pca->mypcaParms # if(!all(is.na(mypcaParms$data))){ # cat('\n') # cat('# 主成分分析结果') # cat('\n') # cat('\n') # # cat('主成分分析采用R psych包的principal函数进行分析。') # cat('\n') # # # cat('## 结果部分') # cat('\n') # for(i in 1:nrow(mypcaParms)){ # cat('\n') # cat(paste0('### 第',i,'个模型的结果:')) # cat('\n') # # pcaS( # data=LstMadis$Data[[mypcaParms$data[i]]], # vars=mypcaParms$vars[i], # nfcts=mypcaParms$nfcts[i], # Rotate=mypcaParms$Rotate[i], # Scores=mypcaParms$Scores[i], # subset=mypcaParms$subset[i], # pcaVarName=mypcaParms$pcaVarName[i])->res # # cat('\n') # cat(paste0('#### 第',i,'主成分分析图形结果:')) # cat('\n') # plot(scree(res$dataScree)) # cat('\n') # cat('\n') # cat(paste0('#### 第',i,'主成分分析因子载荷结果:')) # cat('\n') # cat(pander::pander(res$resPCA$loadings[],split.table=Inf)) # cat('\n') # cat('\n') # cat(pander::pander(res$cumVar,split.table=Inf)) # cat('\n') # } # # } ## 时间序列分析结果部分 LstMadis$myProphet->myProphetParms if(!all(is.na(myProphetParms$data))){ cat('\n') cat('# prophet results') cat('\n') cat('\n') # cat('时间序列模型采用prophet包进行分析,结果提供历史数据的按时间段分析结果以及模型预测图形。') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myProphetParms)){ cat('\n') cat(paste0('### prohpet model ',i,' results')) cat('\n') prophetS(data=LstMadis$Data[[myProphetParms$data[i]]], tsVar=myProphetParms$tsVar[i], tsFormat = myProphetParms$tsFormat[i], measureVars=myProphetParms$measureVars[i], groupVars = myProphetParms$groupVars[i], Period = myProphetParms$Period[i], FN=myProphetParms$FN[i], Cap=myProphetParms$Cap[i], Floor=myProphetParms$Floor[i], Growth=myProphetParms$Growth[i], H=myProphetParms$H[i], yearlyS = myProphetParms$yearlyS[i], dailyS = myProphetParms$dailyS[i], weeklyS = myProphetParms$weeklyS[i])->res cat('\n') cat(paste0('#### historical data results ',i,' ')) cat('\n') cat(pander::pander(res$tabRes,split.table=Inf)) cat('\n') cat(paste0('#### graph of historical data ',i,' ')) cat('\n') cat('\n') print(res$graphRes) cat('\n') cat(paste0('#### predicted results',i,' ')) cat('\n') cat('\n') print(res$tabPred) cat('\n') cat('\n') cat(paste0('#### graph of predicted results ',i,' ')) cat('\n') cat('\n') print(res$graphPredict) cat('\n') cat('\n') } } ## 分类统计表 LstMadis$myTable->myTableParms if(!all(is.na(myTableParms$data))){ cat('\n') cat('# table one') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myTableParms)){ cat('\n') cat(paste0('### the ',i,'th table one')) cat('\n') cat(pander::pander(table1(data=LstMadis$Data[[myTableParms$data[i]]],grpVars=myTableParms$grpVars[i],testVars=myTableParms$testVars[i],normSamSize=myTableParms$normSamSize[i],Digits=myTableParms$Digits[i]),split.table=Inf)) cat('\n') cat('\n') } } ## 统计报表 LstMadis$dataMnp->dataMnpParms if(!all(is.na(dataMnpParms$data))){ cat('\n') cat('# data.table results') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(dataMnpParms)){ cat('\n') cat(paste0('### the ',i,' data.table results ')) cat('\n') cat(pander::pander(dataMnp(data=LstMadis$Data[[dataMnpParms$data[i]]], subset=dataMnpParms$subset[i], newVars=dataMnpParms$newVars[i], newVarsFormulas=dataMnpParms$newVarsFormulas[i], newVarsBy=dataMnpParms$newVarsBy[i], indexNames=dataMnpParms$indexNames[i], Formulas=dataMnpParms$Formulas[i], dimVars=dataMnpParms$dimVars[i], dimNames=dataMnpParms$dimNames[i], dateVar=dataMnpParms$dateVar[i], dtOrders=dataMnpParms$dtOrders[i], margin=dataMnpParms$margin[i], revisedMargin=dataMnpParms$revisedMargin[i], revisedNames=dataMnpParms$revisedNames[i], revisedFormulas=dataMnpParms$revisedFormulas[i], orderVars=dataMnpParms$orderVars[i], orders=dataMnpParms$orders[i], Digits=dataMnpParms$Digits[i], tbVars=dataMnpParms$tbVars[i], hbVars=dataMnpParms$hbVars[i], colOrder=dataMnpParms$colOrder[i])$tabRes,split.table=Inf)) cat('\n') cat('\n') } } ## 统计图形 LstMadis$myGplt->myGpltParms if(!all(is.na(myGpltParms$data))){ cat('\n') cat('# ggplot results') cat('\n') cat('\n') # cat('## results') cat('\n') for(i in 1:nrow(myGpltParms)){ cat('\n') cat(paste0('### the ',i,' th graph')) cat('\n') print(ggplt2S( data=LstMadis$Data[[myGpltParms$data[i]]], x=myGpltParms$x[i], y=myGpltParms$y[i], size=myGpltParms$size[i], fill=myGpltParms$fill[i], color=myGpltParms$color[i], shape=myGpltParms$shape[i], alpha=myGpltParms$alpha[i], facetVar=myGpltParms$facetVar[i], geom=myGpltParms$geom[i], smoothMethod=myGpltParms$smoothMethod[i], barPos=myGpltParms$barPos[i], labx=myGpltParms$labx[i], laby=myGpltParms$laby[i], title=myGpltParms$title[i], Bins=myGpltParms$Bins[i], theme=myGpltParms$theme[i], Width=myGpltParms$Width[i], Colour=myGpltParms$Colour[i], Fill=myGpltParms$Fill[i], Size=myGpltParms$Size[i], Alpha=myGpltParms$Alpha[i], Shape=myGpltParms$Shape[i] )$resGGplot) cat('\n') cat('\n') } }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.