knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(sspalmer) library(ggplot2)
head(pal_penguin)
# cleaning extraneous values pal_penguin <- pal_penguin[!(pal_penguin$`Mean Mass Flux (mg/m²/day)` < 0),]
g <- ggplot(data = pal_penguin, aes(x = `Start Date`, y = `Mean Mass Flux (mg/m²/day)`)) + geom_point() + labs(x = "Date", y = "Mean Mass Flux (mg/m²/day)", title = "Mean Mass Flux Overtime") + theme(plot.title = element_text(hjust = 0.5)) g
g <- ggplot(data.frame(pal_penguin$`Mean Mass Flux (mg/m²/day)`), aes(pal_penguin$`Mean Mass Flux (mg/m²/day)`)) + geom_histogram(binwidth = 60, aes(y = ..density..)) + labs(x = "Mean Mass Flux (mg/m²/day)", y = "Density") + theme(plot.title = element_text(hjust = 0.5)) g
g + geom_density(bw = 20, kernel = "gaussian", col = "red")
g + geom_density(bw = 20, kernel = "rectangular", col = "dodgerblue")
g + geom_density(bw = 20, kernel = "epanechnikov", col = "blue")
g + geom_density(bw = "ucv", kernel = "gaussian", col = "pink") + geom_density(bw = "nrd", kernel = "gaussian", col = "purple")
Out of all the density curves, it looks like a bandwidth of 20 with the epanechnikov kernel fits the Mean Mass Flux data the best.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.