Description Usage Arguments See Also Examples
To be run from run_visual_dive
.
This will plot a count of participants, optionally facetted down and/or across
by additional variables. If facetting (i.e., grouping) missing values will
be removed from the corresponding variables before plotting.
1 | plot_trend(tbl, down = "None", across = "None")
|
tbl |
data frame holding table produced by |
down |
variable name for optional facetting down. If "None", no facetting will be done. |
across |
variable name for optional facetting across. If "None", no facetting will be done. |
Other data dive functions:
drop_state_code()
,
filter_demo()
,
get_county_map_dive()
,
load_cust_samp()
,
plot_county_dive()
,
plot_dist()
,
run_visual_dive()
,
set_nonres_county_na()
,
set_other_county_na()
,
summarize_trend()
1 2 3 4 5 6 7 8 9 10 | library(dplyr)
data(hist_samp)
priv <- filter(hist_samp, priv == "all_sports")
summarize_trend(priv, pct = 1) %>% plot_trend()
summarize_trend(priv, "sex", pct = 1) %>% plot_trend("sex")
summarize_trend(priv, "sex", "age", pct = 1) %>% plot_trend("sex", "age")
summarize_trend(priv, pct = 1, metric = "churn") %>% plot_trend()
summarize_trend(priv, "sex", pct = 1, metric = "churn") %>% plot_trend("sex")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.