Description Arguments Value Author(s) See Also
Computes AIC or BIC for each model (K = 1,...,Kmax). Selects the best model and provides an analysis.
n |
Frequencies (integer vector of length J; non-negative entries) |
j |
Possible values (numeric vector of length J > 0) |
Kmax |
Number of maximum components (numeric scalar) |
atoms |
Values marking 'resistant' observations (numeric vector of length < J; elements must also be in j) |
draw |
Should results be visualized? (boolean scalar) |
Ecoff.quantile |
Which quantile should be used for Ecoff? (numeric scalar within (0, 1)) |
pi_cutoff |
Lower bound for group size of 'wild type' (numeric sclara within (0, 1)) |
alpha |
Hyperparameters for MAP estimation (numeric scalar) |
beta |
Hyperparameters for MAP estimation (numeric scalar) |
memb.exp |
Clustering parameter (numeric scalar > 1) |
maxiter |
Maximum number of iterationsn (integer scalar) |
eps |
Convergence criterion |
optim.method |
a |
An object of class 'list
' with elements:
parameters |
Kx4 matrix containing the calculated parameters. |
ECOFF |
1x2 matrix containing the group index and ECOFF. |
AIC |
AIC value. |
BIC |
BIC value. |
log_likelihood |
1xM matrix containing the log likelihood value for each EM iteration. (M number of EM iterations) |
EM_iterations |
Number of EM iterations. |
Lisa Allmesberger Fabian Bergs Stefan Immler Michael Kässmann
total.function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.