model_select_t_mixture: Select model of a t-mixture distribution

Description Arguments Value Author(s) See Also

Description

Computes AIC or BIC for each model (K = 1,...,Kmax). Selects the best model and provides an analysis.

Arguments

n

Frequencies (integer vector of length J; non-negative entries)

j

Possible values (numeric vector of length J > 0)

Kmax

Number of maximum components (numeric scalar)

atoms

Values marking 'resistant' observations (numeric vector of length < J; elements must also be in j)

draw

Should results be visualized? (boolean scalar)

Ecoff.quantile

Which quantile should be used for Ecoff? (numeric scalar within (0, 1))

pi_cutoff

Lower bound for group size of 'wild type' (numeric sclara within (0, 1))

alpha

Hyperparameters for MAP estimation (numeric scalar)

beta

Hyperparameters for MAP estimation (numeric scalar)

memb.exp

Clustering parameter (numeric scalar > 1)

maxiter

Maximum number of iterationsn (integer scalar)

eps

Convergence criterion

optim.method

a

Value

An object of class 'list' with elements:

parameters

Kx4 matrix containing the calculated parameters.

ECOFF

1x2 matrix containing the group index and ECOFF.

AIC

AIC value.

BIC

BIC value.

log_likelihood

1xM matrix containing the log likelihood value for each EM iteration. (M number of EM iterations)

EM_iterations

Number of EM iterations.

Author(s)

Lisa Allmesberger Fabian Bergs Stefan Immler Michael Kässmann

See Also

total.function


sp2019-antibiotics/Team-Student documentation built on Nov. 5, 2019, 9:13 a.m.