#' A list of binary matrices and their associated parameters
#'
#' @rdname forestgap
#'
#' @format A list of logical matrices which are the end results of simulations
#' from Kubo's Forest Gap model along a gradient of increasing values of
#' stress (see references).
#'
#' @source Generated using the implementation of Kubo's model in caspr 0.2.0
#' \url{https://github.com/fdschneider/caspr}.
#'
#' @references
#'
#' Kubo, T., Iwasa, Y., & Furumoto, N. (1996). Forest spatial dynamics with gap
#' expansion: Total gap area and gap size distribution. Journal of Theoretical
#' Biology, 180(3), 229-246. \doi{10.1006/jtbi.1996.0099}
#'
"forestgap"
#' @rdname forestgap
#'
#' @format The parameters used for the simulations, as a data frame.
#'
#' @details Kubo's forest gap model has three parameters, \eqn{\alpha}{alpha}
#' that controls the reproductive rate of trees, \eqn{d}{d} controls the
#' non-spatialized mortality and \eqn{\delta}{delta} the increased mortality
#' due to the presence of a neighboring gap.
#'
"forestgap.pars"
#' @rdname arizona
#'
#' @title Aerial views of vegetation from Arizona, USA
#'
#' @format A list of logical matrices which were obtained through the
#' classification of aerial images of vegetation taken in Arizona (USA).
#'
#' @source Derived from the images provided in the Supplementary Material of
#' Rodriguez et al. (2017).
#'
#' @references
#'
#' Rodriguez, F., A. G. Mayor, M. Rietkerk, and S. Bautista. 2017. A null model
#' for assessing the cover-independent role of bare soil connectivity as
#' indicator of dryland functioning and dynamics. Ecological Indicators.
#'
"arizona"
#' @rdname serengeti
#'
#' @title Serengeti dataset
#'
#' @description Vegetation data along a rainfall gradient in Serengeti national
#' park.
#'
#' @details
#'
#' The data-set consists of a rectangular area of size 7.5 km x 90 km.
#' These data are represented as a list of matrices. Each matrix is a moving
#' window of 7.5 km x 7.5 km which moves my 2.5 km along the length of the
#' rectangular data-set.
#'
#' Each entry in the matrix is vegetation data at a resolution of 30m as
#' classified into binary units with FALSE (grass) and TRUE (forest).
#' The rainfall data provided here is the average rainfall (mm/yr) of a
#' moving window of dimension 7.5km which moves my 2.5 km along the length
#' of the rectangular data-set.
#'
#' @format A list of logical matrices
#'
#' @source Extracted from Eby's et al (2017) supplementary material
#' \url{https://github.com/tee-lab/spacetime-csd/}
#'
#' @references
#'
#' Eby, S., Agrawal, A., Majumder, S., Dobson, A.P. & Guttal, V. (2017).
#' Alternative stable states and spatial indicators of critical slowing down
#' along a spatial gradient in a savanna ecosystem: Global Ecology
#' and Biogeography, 26, 638-649
#'
#' Reed, D. N., Anderson, T. M., Dempewolf, J., Metzger, K., & Serneels, S. (2009).
#' The spatial distribution of vegetation types in the Serengeti ecosystem:
#' the influence of rainfall and topographic relief on vegetation patch
#' characteristics. Journal of Biogeography, 36(4), 770-782.
#
# The strings below have no effect except forcing R to read this file.
"serengeti"
#' @rdname serengeti
#'
#' @format The annual rainfall corresponding to the matrices in the serengeti
#' dataset, in the corresponding order.
#'
"serengeti.rain"
# A list of binary matrices for the density-dependent aggregation model
#' @rdname dda
#'
#' @title Density-dependent aggregation model
#'
#' @description \code{dda} is a list of matrices representing results from the
#' density-dependent aggregation model (Siteur et al. 2023) in \code{dda}.
#' \code{dda.pars} is a data frame with the model parameters. Each row of
#' \code{dda.pars} corresponds to a matrix in \code{dda}, in the same order. All
#' parameters were maintained constant, except for tau (see model
#' definition in Siteur et al. 2023).
#'
#' @source Kindly provided by Koen Siteur
#'
#' @examples
#'
#' ddasews <- lsw_sews(dda)
#' plot(ddasews, along = dda.pars[ ,"tau"]) # tau is the changing parameter
#'
#' display_matrix(dda[[4]])
#'
#' @references
#'
#' Siteur, Koen, Quan-Xing Liu, Vivi Rottschäfer, Tjisse van der Heide, Max Rietkerk,
#' Arjen Doelman, Christoffer Boström, and Johan van de Koppel. 2023. "Phase-Separation
#' Physics Underlies New Theory for the Resilience of Patchy Ecosystems." Proceedings
#' of the National Academy of Sciences 120 (2): e2202683120.
#' https://doi.org/10.1073/pnas.2202683120.
"dda"
#' @rdname dda
#'
"dda.pars"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.