| rppm | R Documentation |
Fits a recursive partition model to point pattern data.
rppm(..., rpargs=list())
... |
Arguments passed to |
rpargs |
Optional list of arguments passed to |
This function attempts to find a simple rule for predicting low and high intensity regions of points in a point pattern, using explanatory covariates.
The arguments ... specify the point pattern data
and explanatory covariates in the same way as they would be
in the function ppm.
The recursive partitioning algorithm rpart
is then used to find a partitioning rule.
An object of class "rppm". There are methods
for print, plot, fitted, predict and
prune for this class.
.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984) Classification and Regression Trees. Wadsworth.
plot.rppm,
predict.rppm,
prune.rppm.
# New Zealand trees data: trees planted along border
# Use covariates 'x', 'y'
nzfit <- rppm(nztrees ~ x + y)
nzfit
prune(nzfit, cp=0.035)
# Murchison gold data: numeric and logical covariates
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
mfit <- rppm(gold ~ dfault + greenstone, data=mur)
mfit
# Gorillas data: factor covariates
# (symbol '.' indicates 'all variables')
gfit <- rppm(unmark(gorillas) ~ . , data=gorillas.extra)
gfit
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.