knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%", dpi = 500, dev = "cairo_pdf" )
r if(!knitr::is_latex_output()) badger::badge_devel("special-uor/codos", "yellow")
r if(!knitr::is_latex_output()) badger::badge_cran_release("codos", "red")
r if(!knitr::is_latex_output()) badger::badge_github_actions("special-uor/codos")
r if(!knitr::is_latex_output()) badger::badge_doi("10.5281/zenodo.5083309", "blue")
You can(not) install the released version of codos from CRAN with:
install.packages("codos")
And the development version from GitHub with:
# install.packages("devtools") devtools::install_github("special-uor/codos", "dev")
cat(paste0(" ----- Note: Some of the equations on this document are not displayed properly (due to a server issue), check out the [README-extended.pdf](README-extended.pdf). ----- "))
vpd
)vpd
is given by mean daily growing season temperature, tmp
[°C] and moisture index, mi
[-]. Using the CRU TS 4.04 dataset [@cru404] we found the following relation:
The steps performed were:
cld
, pre
, tmn
, tmx
, vap
.r
# Monthly climatology for `tmn`
codos::monthly_clim("cru_ts4.04.1901.2019.tmn.dat.nc", "tmn", 1961, 1990)
Output file:
bash
"cru_ts4.04.1901.2019.tmn.dat-clim-1961-1990.nc"
cld
, pre
, tmn
, tmx
, vap
.r
# Monthly to daily interpolation for `tmn`
codos::nc_int("cru_ts4.04.1901.2019.tmn.dat-clim-1961-1990.nc", "tmn")
Output file:
bash
"cru_ts4.04.1901.2019.tmn.dat-clim-1961-1990-int.nc"
tmp
. Variables used: tmn
and tmx
.r
codos::daily_temp(tmin = list(filename = "cru_ts4.04.1901.2019.tmn.dat-clim-1961-1990-int.nc",
id = "tmn"),
tmax = list(filename = "cru_ts4.04.1901.2019.tmx.dat-clim-1961-1990-int.nc",
id = "tmx"),
output_filename = "cru_ts4.04-clim-1961-1990-daily.tmp.nc")
r
codos::nc_gs("cru_ts4.04-clim-1961-1990-daily.tmp.nc", "tmp", thr = 0)
Output file:
bash
"cru_ts4.04-clim-1961-1990-daily.tmp-gs.nc"
pet
)Install SPLASH
(unofficial R package) as follows:
r
remotes::install_github("villegar/splash", "dev")
Or, download from the official source: https://bitbucket.org/labprentice/splash.
```r elv <- codos:::nc_var_get("halfdeg.elv.nc", "elv")$data tmp <- codos:::nc_var_get("cru_ts4.04.1901.2019.daily.tmp.nc", "tmp")$data cld <- codos:::nc_var_get("cru_ts4.04.1901.2019.cld.dat-clim-1961-1990-int.nc", "cld")$data
codos::splash_evap(output_filename = "cru_ts4.04-clim-1961-1990-pet.nc", elv, # Elevation, 720x360 grid sf = 1 - cld / 100, tmp, year = 1961, # Reference year lat = codos::lat, lon = codos::lon) ```
Output file:
bash
"cru_ts4.04-clim-1961-1990-pet.nc"
mi
)r
pet <- codos:::nc_var_get("cru_ts4.04-clim-1961-1990-pet.nc",
"pet")$data
pre <- codos:::nc_var_get("cru_ts4.04.1901.2019.pre.dat-new-clim-1961-1990-int.nc",
"pre")$data
codos::nc_mi(output_filename = "cru_ts4.04-clim-1961-1990-mi.nc",
pet, # potential evapotranspiration
pre) # precipitation
Output file:
bash
"cru_ts4.04-clim-1961-1990-mi.nc"
vpd
r
tmp <- codos:::nc_var_get("cru_ts4.04-clim-1961-1990-daily.tmp.nc",
"tmp")$data
vap <- codos:::nc_var_get("cru_ts4.04.1901.2019.vap.dat-clim-1961-1990-int.nc",
"vap")$data
output_filename <- file.path(path, "cru_ts4.04-clim-1961-1990-vpd-tmp.nc")
codos::nc_vpd(output_filename, tmp, vap)
Output file:
bash
"cru_ts4.04-clim-1961-1990-vpd-tmp.nc"
mi <- codos:::nc_var_get("cru_ts4.04-clim-1961-1990-mi.nc", "mi")$data Tmp <- codos:::nc_var_get("cru_ts4.04-clim-1961-1990-daily.tmp-gs.nc", "tmp")$data vpd <- codos:::nc_var_get("cru_ts4.04-clim-1961-1990-vpd-tmp-gs.nc", "vpd")$data # Apply ice mask mi[codos:::ice_mask] <- NA Tmp[codos:::ice_mask] <- NA vpd[codos:::ice_mask] <- NA # Filter low temperatures, Tmp < 5 mi[Tmp < 5] <- NA Tmp[Tmp < 5] <- NA # Create data frame df <- tibble::tibble(Tmp = c(Tmp), vpd = c(vpd), MI = c(mi)) # Filter grid cells with missing Tmp, vpd, or MI df <- df[!is.na(df$Tmp) & !is.na(df$vpd) & !is.na(df$MI), ] # Linear approximation lmod <- lm(log(vpd) ~ Tmp + MI, data = df) # Non-linear model exp_mod <- nls(vpd ~ a * exp(kTmp * Tmp - kMI * MI), df, start = list(a = exp(coef(lmod)[1]), kTmp = coef(lmod)[2], kMI = coef(lmod)[3]), control = list(maxiter = 200))
Summary statistics:
df <- read.csv("documentation/codos/inst/extdata/df.csv") # Linear approximation lmod <- lm(log(vpd) ~ Tmp + MI, data = df) # Non-linear model exp_mod <- nls(vpd ~ a * exp(kTmp * Tmp - kMI * MI), df, start = list(a = exp(coef(lmod)[1]), kTmp = coef(lmod)[2], kMI = coef(lmod)[3]), control = list(maxiter = 200))
summary(exp_mod) coefficients(exp_mod)
knitr::asis_output('\n\n\\newpage')
mi
from reconstructed mi
The following equations were used:
where:
And the equilibrium relation:
Steps in the solution:
$$[\xi(\text{T}\text{c1}, z) \times \text{vpd}_1 ^ {1/2} + \text{vpd}_1] / [\text{c}\text{a,1}(z) / (\text{c}_\text{a,1}(z) + 9.7)] $$
where:
And solve for $\text{vpd}_1$.
Using codos
, all the steps translate to a simple function call
corrected_mi <- codos::corrected_mi(present_t, past_temp, recon_mi, modern_co2, past_co2)
Note that this function takes temperatures in [°C] and ambient CO$_2$ partial pressures in
[$\mu\text{mol}/\text{mol}$] (unless, scale_factor
is overwritten, e.g. scale_factor = 1
to use ambient CO$_2$ partial pressures in [Pa]).
More details:
?codos::corrected_mi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.